
A	So%ware	Developer's	Journey	into	a	
Deeply	Heterogeneous	World	
	
Tomas	Evensen,	CTO	Embedded	So%ware,	Xilinx	

© Copyright 2016 Xilinx
.

Page 2

Embedded	Development:	Then	

Simple single CPU

Most code developed internally
–  10’s of thousands of lines of code in C and assembly

Single Real-time Operating System

JTAG/BDM debugger

Simple I/O

© Copyright 2016 Xilinx
.

Page 3

Embedded	Development:	Now	
Multiple heterogeneous CPUs

Multiple accelerators and programmable logic

Millions of lines of code - Mostly from other places like open source

Multiple Operating Systems (i.e. Linux + RTOS)

JTAG debugger

Safety and Security concerns Xilinx Zynq MPSoC

© Copyright 2016 Xilinx
.

Dedicated	Hardware	is	Energy	Efficient	

Microprocessors General
Purpose DSP

Dedicated

3 orders of
Magnitude!

Courtesy Bob Broderson,
based on published results at ISSCC conferences.

Page 4

© Copyright 2016 Xilinx
.

FPGA Fabric

ARM Processing System

Heterogeneous	Example:	IIoT	Gateway	

Any Design

A
ny N

etw
ork
Zynq UltraScale+ SoC

API

Motor Control FOC

Image Signal Processing

Sensor Fusion

I/O Expansion

HW Acceleration of
Application & RT Processing

Cloud
Connectivity

Expertise Needed All the Way from a System Level to Cloud Connectivity

Page 5

© Copyright 2016 Xilinx
.

FPGA:	The	“Chameleon”	Chip	FPGA	–	The	“Chameleon”	Chip	

Is it glue logic?

Is it a powerful parallel DSP engine?

Is it an RTL simulator?

 Yes!!!

 And more…
Page 6

© Copyright 2016 Xilinx
.

Limited pool of FPGA developers
–  Need to reach software developers
–  Software developers are different!

Key to reach software developers
1.  Create libraries so they can utilize accelerators written by others
2.  Create tools so they can utilize FPGA without RTL

Page 7

FPGA	–	Reaching	New	Developers	

© Copyright 2016 Xilinx
.

Page 8

Heterogeneous	So%ware	Development	

© Copyright 2016 Xilinx
.

Mapping	ApplicaQons	to	Heterogeneous	Systems	

Page 9

Hardware Hardware

Software
(A9) Software

(A9)

Software
(A53) Software

(A53) Software
(A53) Software

(A53)

Software
(R5)

User Application User Application

© Copyright 2016 Xilinx
.

Accelerated libraries and frameworks for common functions
–  E.g. OpenCV, CNN, …

Support for multiple types of Operating Environments
–  Solid Linux support, bare metal, FreeRTOS, 3rd party RTOS, Windows EC
–  Mixing of OS’s through AMP and hypervisors

System debugger – Unifying debug/profile
–  Debug across cores and FPGA including profiling and trace

FPGA Compiler – SDSoC
–  Write code for FPGA using C/C++/OpenCL
–  Automate the “glue” between execution engines

Other
–  Virtual Prototyping for complete system

Components	for	Heterogeneous	SW	Development	

Page 10

© Copyright 2016 Xilinx
.

Framework	Programming:	Deep	Learning			
	 Many embedded problems are being converted to use deep learning

–  Embedded vision, speech, …
–  Using neural networks of different kinds, e.g. CNN, …

Neural networks are “programmed” through learning

Neural networks are typically controlled by frameworks
–  Caffe, Tensorflow, Torch, Theano, …

Neural networks are very computation intensive

FPGAs can be very efficient for neural networks
–  Combination of fixed point, flexible routing, memory hierarches and DSPs
–  By supporting existing framework, programmers can avoid RTL

Output	
Feature	
Maps	 		 		

Filter	
Sizing	 		 		 MACs	

Rows	 Cols	 Depth	 Dim	 Depth	 		 conv	
conv1	 55	 55	 64	 11	 3	 		 70,276,800	
conv2	 27	 27	 192	 5	 64	 		 223,948,800	
conv3	 13	 13	 384	 3	 192	 		 112,140,288	
conv4	 13	 13	 256	 3	 384	 		 149,520,384	
conv5	 13	 13	 256	 3	 256	 		 99,680,256	
fc6	 6	 6	 256	 4096	 37,748,736	
fc7	 1	 1	 4096	 4096	 16,777,216	
fc8	 1	 1	 4096	 1000	 4,096,000	

Total	 714,188,480	

AlexNet Calculations

Page 11

© Copyright 2016 Xilinx
.

What is OpenAMP?

–  A standard for mixing embedded Operating Systems
–  An Open Source project

Trend to combine Operating Systems
–  Linux is used in majority of use cases
–  Many free and commercial RTOS’s are being used
–  Bare metal (no OS) is common on smaller cores

Why multiple Operating Systems?
–  Heterogeneous cores
–  Different needs

•  Real-time vs. general purpose
•  Different Safety/Security levels
•  Legacy
•  GPL avoidance

Safety and Security issues common
–  Affects boot order, messaging implementation, …

Page 12

OpenAMP:	A	Standard	for	MulQ-OS	Systems	

Secure State

ARM Trusted Firmware (ATF)

App1 App2

Trusted OS

Non-secure State

Hypervisor

App1 App2

Linux

App1 App2

RTOS

FPGA

MicroBlaze

App
1

App
2

RTOS

MicroBlaze

App
1

App
2

Bare Metal

A53
Core 0

A53
Core 1

A53
Core 2

A53
Core 3

RPU

R5 Core 0

App
1

App
2

RTOS

R5 Core 1

App
1

App
2

Bare Metal

- Examples of OpenAMP applications

© Copyright 2016 Xilinx
.

OpenAMP	CapabiliQes	

A53 A53 A53 A53 R5 R5 MB MB MB MB

Linux

System Wide Applications
Bare
Metal

VxWorks

FreeR
TOS

uC-
OSII

Nucleus

Bare
Metal

Bare
Metal

Bare
Metal

Bare
Metal

Provides a Layer for Applications
–  Standard API’s that allow applications to be

ported across processors and operating
systems

System Development
–  Provides a wide rage of capabilities needed to

deploy applications across asymmetric
computing elements

Inter-OS & Inter Processor Communication
–  Send messages back and forth

OS Management
–  Provides booting/rebooting of processors

Two Implementations
–  GPL implementation in Linux kernel
–  BSD implementation for RTOS/BM/Linux user space

OpenAMP SW

Page 13

© Copyright 2016 Xilinx
.

Complete system visibility needed
–  Heterogeneous debugging and analysis is very hard!
–  Especially timing related problems

Tools Features:
–  Heterogeneous system Level Debugging

•  Visibility into both CPUs and FPGA

–  Integrated performance profiling
•  Which parts of the chip are busy?
•  Measure processor and bus activities
•  Integrated traffic generator

–  System event trace
•  What is happening in the chip over time?
•  Combined time line for SW and HW events

–  Based on standards – Open source Eclipse, TCF

Strong system level tools are critical for heterogeneous development

So%ware	Development	Tools	(SDK)		
	

71% - Software
Development tools

Page 14

© Copyright 2016 Xilinx
.

Performance	Data	
 Live tables

–  ARM performance registers
•  Cache misses, IPC, …

–  AXI performance registers
•  Transactions, latency, …

–  Non-intrusive JTAG profiling

 Timeline plot
–  Correlate performance

•  Cache, busses, CPU, …

–  Examples:
•  How does ACP traffic affect

cache miss rate?
•  How balanced are the

busses?
•  How does changing mem

access priority affect
throughput?

Page 15

© Copyright 2016 Xilinx
.

Evaluate	Performance	-	Traffic	GeneraQon	
 Generate Traffic Patterns

–  Pre-defined bitstream
•  Configurable to emulate traffic

patterns on multiple ports

–  Simultaneous CPU loading
•  Configurable app types

–  Allows for pre-porting eval

Page 16

© Copyright 2016 Xilinx
.

Event	Trace	to	Dissect	Timing	Issues	

 Common Timeline
–  Software Events

•  OS events (sys calls, locks, …)
•  User events

–  Hardware Events
•  Buss transactions, PL events

–  Low overhead

Page 17

© Copyright 2016 Xilinx
.

Page 18

SDSoC:	FPGA	Development	through	So%ware	

© Copyright 2016 Xilinx
.

Page 19

FPGA	ProducQvity	with	Technology	Advancement	
	

Performance / Watt & ‘Any to Any’ Connectivity

E
as

e
of

 D
ev

el
op

m
en

t

CPU

Zynq SoC &
MPSoC

GPU
ARM SoCs

& DSPs

Zynq SoC &
MPSoC

HLS

© Copyright 2016 Xilinx
.

Programmable Logic (PL)

Processing System (PS)

Typical	Zynq	Development	Flow	

 APP(){

 funcA();

 funcB();

 funcC();}

HW-SW partition?

funcA funcB, funcC

HW-SW Connectivity?

funcA funcB, funcC
Datamover

PS-PL interfaces
SW drivers Ex

pl
or

e
op

tim
al

 a
rc

hi
te

ct
ur

e

Page 20

© Copyright 2016 Xilinx
.

Before	SDSoC:	

Page 21

PL

PS

Application SDK C/C++

Driver SDK, OS Tools C

IP Integrator IPI project Datamover
PS-PL interface

IP Vivado HLS
Verilog, VHDL

HW-SW partition
spec

Met
Req

?

Need to modify multiple levels of design entry

© Copyright 2016 Xilinx
.

A%er	SDSoC:		

Page 22

C/C++

HLS
Verilog, VHDL

HW-SW partition
spec

Remove the manual design of SW drivers and
HW connectivity

© Copyright 2016 Xilinx
.

A%er	SDSoC:	

Page 23

C/C++

Select functions
for PL

Remove the manual design of SW drivers and
HW connectivity

Use the C/C++ end application as the input
calling the user algorithm IPs as function calls

Partition set of functions to Programmable
Logic by a single click

func1();<-SW
func2();<-HW
func3();<-HW

© Copyright 2016 Xilinx
.

A%er	SDSoC:	AutomaQc	System	GeneraQon	

Page 24

C/C++

Select functions
for PL

PL

PS

IP

Application

Driver

SDSoC

Datamover
PS-PL interface

Met
Req

?

C/C++ to System in hours, days

func1();<-SW
func2();<-HW
func3();<-HW

© Copyright 2016 Xilinx
.

Example	1:	Matrix	MulQply	+	Add	
 main(){

 malloc(A,B,C);

 mmult(A,B,D);

 madd(C,D,E);

 printf(E);

 }

 madd(inA,inB,out){

}

HLS C/C++

 mmult(inA,inB,out){

}

HLS C/C++

A,B datamovers

AXI Bus

Platform

Application

Driver

mmult madd

Generated

D

A B C E

PS

PL

© Copyright 2016 Xilinx
.

Example	2:	1080p60	Stereo	Vision	
 main(){

 histEqual(A);

 histEqual(B)

 ractify(A,B,C);

 stereoBM(C,D);

 overlay(D,out);

 display(out);

}

ZC706 + HDMI FMC
Platform

Image processing on the video I/Os via DDR3 memory

HDMI

AXI
PS

PL

Linux

Libraries
Application

Drivers
Stub

SDSoC
Generated

Platform

Histogram
equalize

Histogram
equalize

Stereo Block
Matching Overlay HDMI

DMA
AXI-S

Ractify

© Copyright 2016 Xilinx
.

Explicit Message Passing APIs
–  Generic API to transfer data (send/receive, set/get)
–  Tasks written in C/C++ (SW) and/or VHDL/Verilog (HW)
–  Mental model: Threads communicating with each other

Function call paradigm
–  Standard function call paradigm

•  Synchronous or asynchronous

–  Mental model: Call an accelerator that returns result

Enqueue work items (OpenCL)
–  Compile OpenCL host and kernels
–  Kernels compiled to CPU/Neon or FPGA
–  Mental model: Enqueue tasks to next available exec unit

High level modeling
–  MathWorks - MATLAB/Simulink
–  National Instruments – LabView

How	to	Call	Accelerators	-	Programming	Paradigms	
 send_i(port1, A, …);
 send_i(port2, B, …);
 receive_i(port3, C, …);
 …
 cf_wait_all(…);

 mm_mul(A, B, C);
 // or
 mm_mul_i(A, B, C, …);
 …
 wait(…);

*k = clCreateKernel(*prog, "mmul", &err);
err != clSetKernelArg(*k, 3, SIZE, &A);
err |= clSetKernelArg(*k, 4, SIZE, &B);
err |= clSetKernelArg(*k, 5, SIZE, &C);
err = clEnqueueNDRangeKernel(cmds, k, …);

No “right” way of doing this – Depends on application
 Page 27

© Copyright 2016 Xilinx
.

Heterogeneous systems are here to stay
–  And they will be increasingly complex

Developing for heterogeneous systems is hard
–  Each component might have its own language and operating environment
–  Parallel programming is hard to get right

New standards, tools, frameworks and APIs are here to help
–  Hiding the complexity and unifying the environments

Don’t get stuck in old ways
–  Embedded developers are conservative
–  Never a good time to try new methodologies
–  “Boiling frog” syndrome…

Summary	

Page 28

© Copyright 2016 Xilinx
.

Page 29

