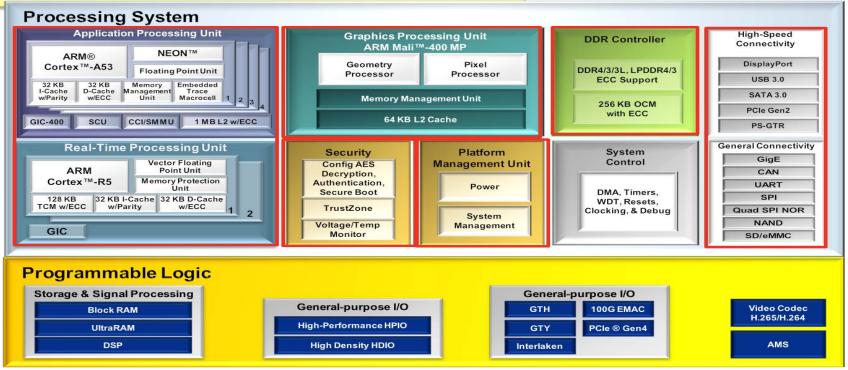


A Software Developer's Journey into a Deeply Heterogeneous World

Tomas Evensen, CTO Embedded Software, Xilinx

Embedded Development: Then

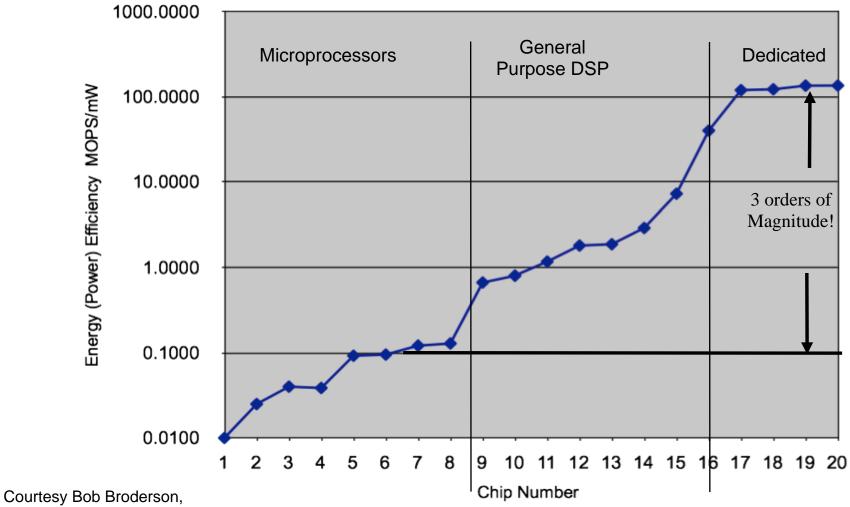
- Simple single CPU
- Most code developed internally
 - 10's of thousands of lines of code in C and assembly
- Single Real-time Operating System
- > JTAG/BDM debugger
- Simple I/O


🔉 📔 😇 Sour	<u></u>	_				
			4 Þ	K A Mixed		
	#54 #55		si.s	<u>.</u>		CI- indem to flows on
0	02000204:	xor		r22,r0,0,16,31	;	SI= index to flags ar
	#56	xor				DI = primes counter
	02000208:	201		r23,r0,0,16,31	,	DI primeo councer
	#57					
	#58 sieve2:				;	main loop of sieve
	#59	test		ptr flags[si],1	;	is this a prime?
	D200020C:			r22,r22,0,16,31		
	02000210:		lbzx	r8,r24,r22		
	02000214:	÷	andi.	r10,r8,1	_	iuma i Caraina
	#60 02000218:	jnz	snor bne	t sieve4 0x02000244	;	jump if prime
¥*	#61		pue	0x02000244		
	#62 sieve3:	inc	si			bump to next slot in "
	0200021C:		addic	r22,r22,1		
EAK	#63	cmp	si,a:	size	;	are we done?
196	02000220:		extsh	r4,r22		
	02000224:		cmpi	crf0,0,r4,0x1FFE		
	#64	jle	. siev		2	jump to test another
	02000228:		bng	0x0200020C		
	#65 #66	dec	we and	ptr counter		more iterations?
	02000220:	uec	lhz	r8,0x1FFF(r24)		more iterations?
	02000220.		1112	10,081111(124)		

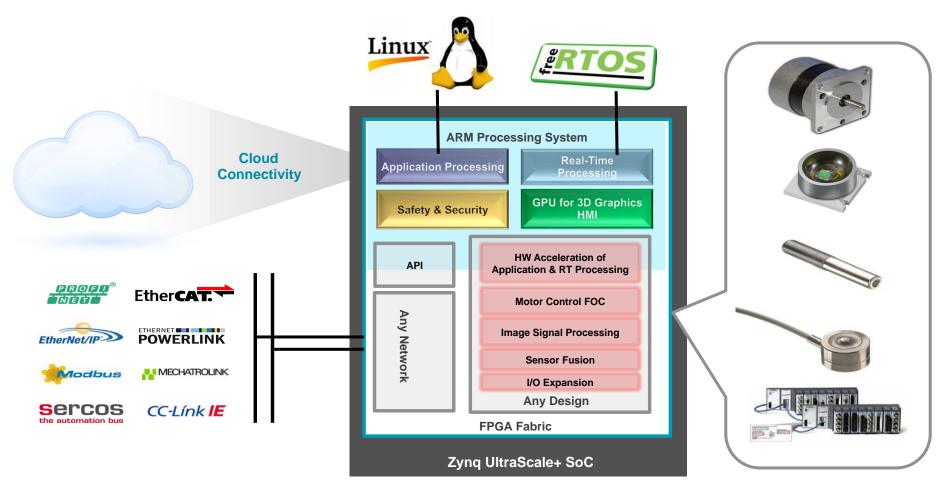
© Copyright 2016 Xilinx

EXILINX > ALL PROGRAMMABLE.

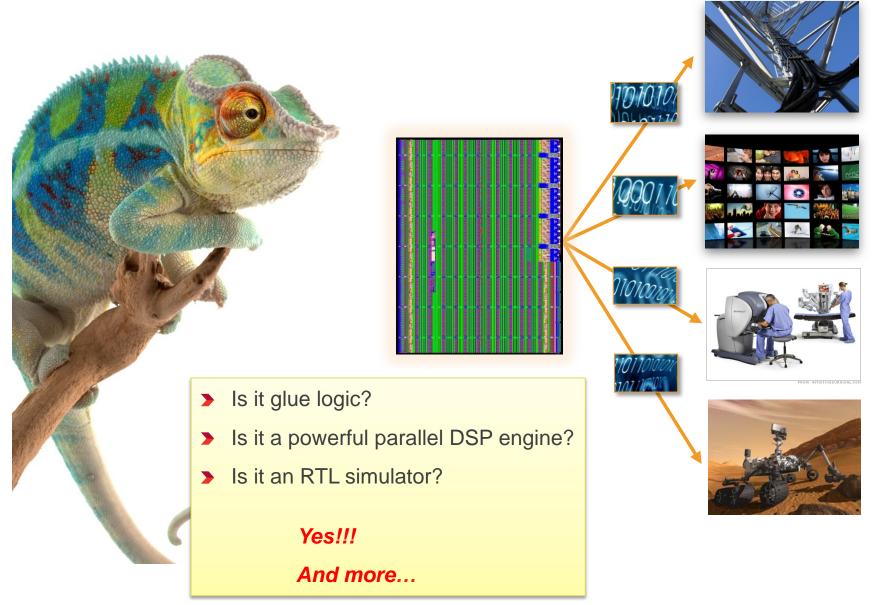
Embedded Development: Now


- > Multiple heterogeneous CPUs
- Multiple accelerators and programmable logic
- > Millions of lines of code Mostly from other places like open source
- Multiple Operating Systems (i.e. Linux + RTOS)
- JTAG debugger
- Safety and Security concerns

XILINX ➤ ALL PROGRAMMABLE.

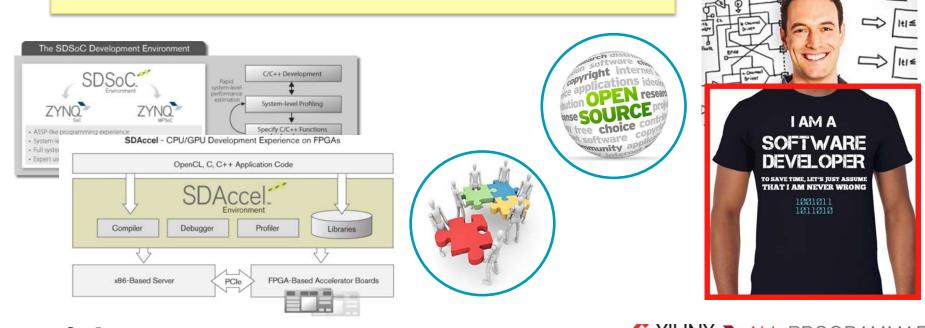

Xilinx Zynq MPSoC

Dedicated Hardware is Energy Efficient


based on published results at ISSCC conferences.

Heterogeneous Example: IIoT Gateway

Expertise Needed All the Way from a System Level to Cloud Connectivity

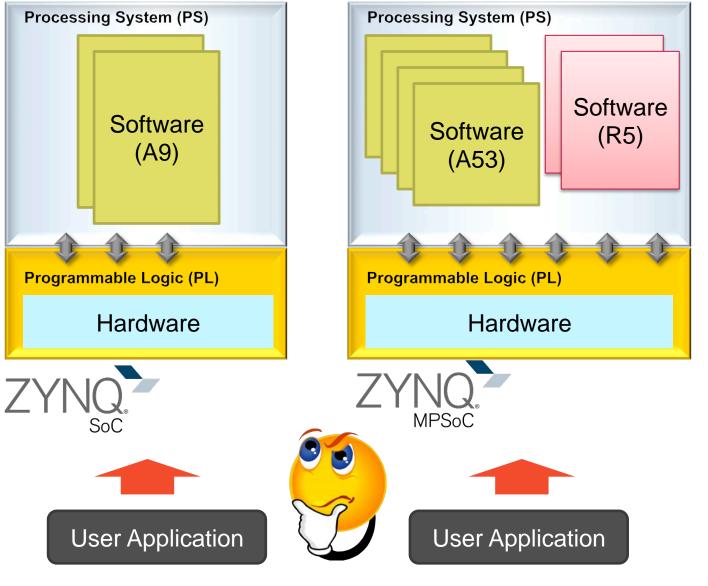

FPGA – The "Chameleon" Chip

FPGA – Reaching New Developers

> Limited pool of FPGA developers

- Need to reach software developers
- Software developers are different!
- > Key to reach software developers
 - 1. Create libraries so they can utilize accelerators written by others
 - 2. Create tools so they can utilize FPGA without RTL

© Copyright 2016 Xilinx


b) t<0

b) [t<0]

Heterogeneous Software Development

Mapping Applications to Heterogeneous Systems

© Copyright 2016 Xilinx

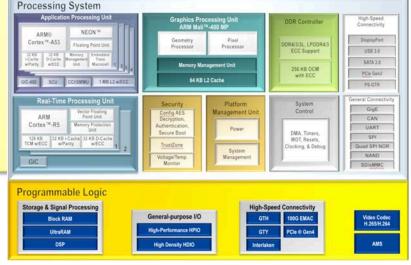
Components for Heterogeneous SW Development

- > Accelerated libraries and frameworks for common functions
 - E.g. OpenCV, CNN, ...

> Support for multiple types of Operating Environments

- Solid Linux support, bare metal, FreeRTOS, 3rd party RTOS, Windows EC
- Mixing of OS's through AMP and hypervisors

System debugger – Unifying debug/profile

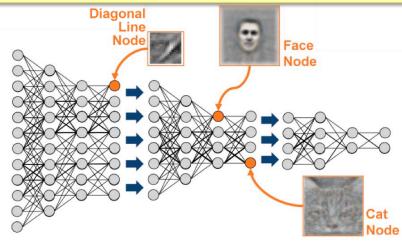

Debug across cores and FPGA including profiling and trace

> FPGA Compiler – SDSoC

- Write code for FPGA using C/C++/OpenCL
- Automate the "glue" between execution engines

> Other

- Virtual Prototyping for complete system



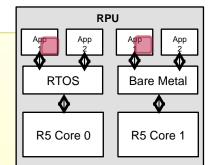
Framework Programming: Deep Learning

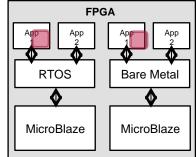
- > Many embedded problems are being converted to use deep learning
 - Embedded vision, speech, ...
 - Using neural networks of different kinds, e.g. CNN, ...
- > Neural networks are "programmed" through learning
- > Neural networks are typically controlled by frameworks
 - Caffe, Tensorflow, Torch, Theano, ...
- > Neural networks are very computation intensive

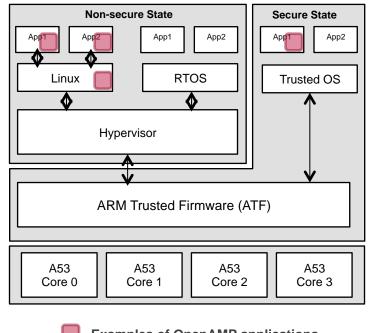
> FPGAs can be very efficient for neural networks

- Combination of fixed point, flexible routing, memory hierarches and DSPs
- By supporting existing framework, programmers can avoid RTL

	Output Feature Maps			Filter Sizing			MACs
	Rows	Cols	Depth	Dim	Depth		conv
conv1	55	55	64	11	3		70,276,800
conv2	27	27	192	5	64		223,948,800
conv3	13	13	384	3	192		112,140,288
conv4	13	13	256	3	384		149,520,384
conv5	13	13	256	3	256		99,680,256
fc6	6	6	256		4096		37,748,736
fc7	1	1	4096		4096		16,777,216
fc8	1	1	4096		1000		4,096,000
						Total	714,188,480

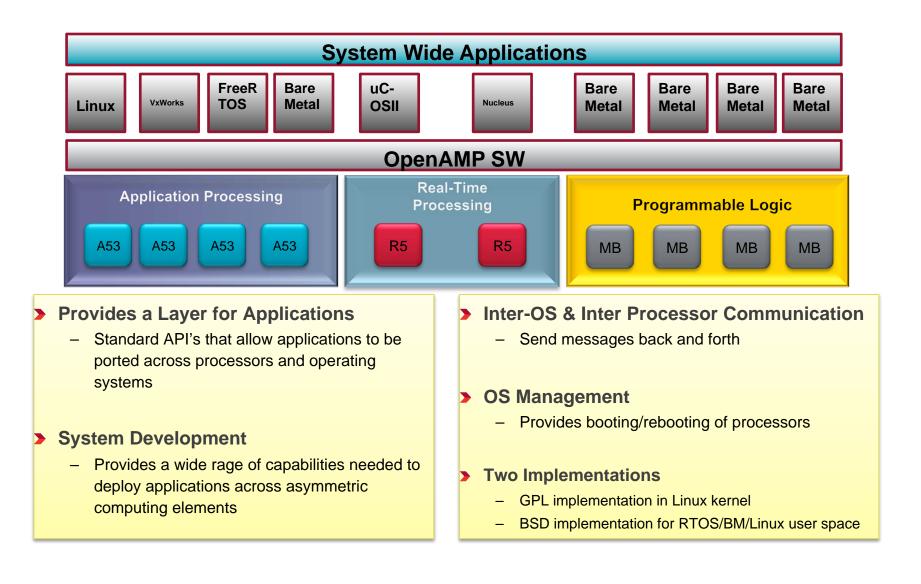

Page 11


© Copyright 2016 Xilinx


AlexNet Calculations

OpenAMP: A Standard for Multi-OS Systems

- > What is OpenAMP?
 - A standard for mixing embedded Operating Systems
 - An Open Source project
- > Trend to combine Operating Systems
 - Linux is used in majority of use cases
 - Many free and commercial RTOS's are being used
 - Bare metal (no OS) is common on smaller cores
- > Why multiple Operating Systems?
 - Heterogeneous cores
 - Different needs
 - Real-time vs. general purpose
 - Different Safety/Security levels
 - Legacy
 - GPL avoidance
- > Safety and Security issues common
 - Affects boot order, messaging implementation, ...

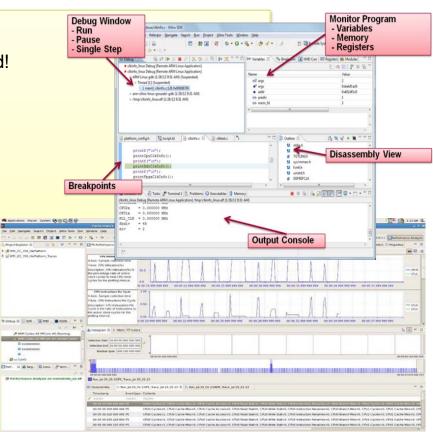


- Examples of OpenAMP applications

OpenAMP Capabilities

Software Development Tools (SDK)

2015 UBM Electronics Embedded Markets Study


What are the most important factors in choosing a processor?

> Complete system visibility needed

- Heterogeneous debugging and analysis is very hard!
- Especially timing related problems

> Tools Features:

- Heterogeneous system Level Debugging
 - Visibility into both CPUs and FPGA
- Integrated performance profiling
 - Which parts of the chip are busy?
 - Measure processor and bus activities
 - Integrated traffic generator
- System event trace
 - What is happening in the chip over time?
 - Combined time line for SW and HW events
- Based on standards Open source Eclipse, TCF

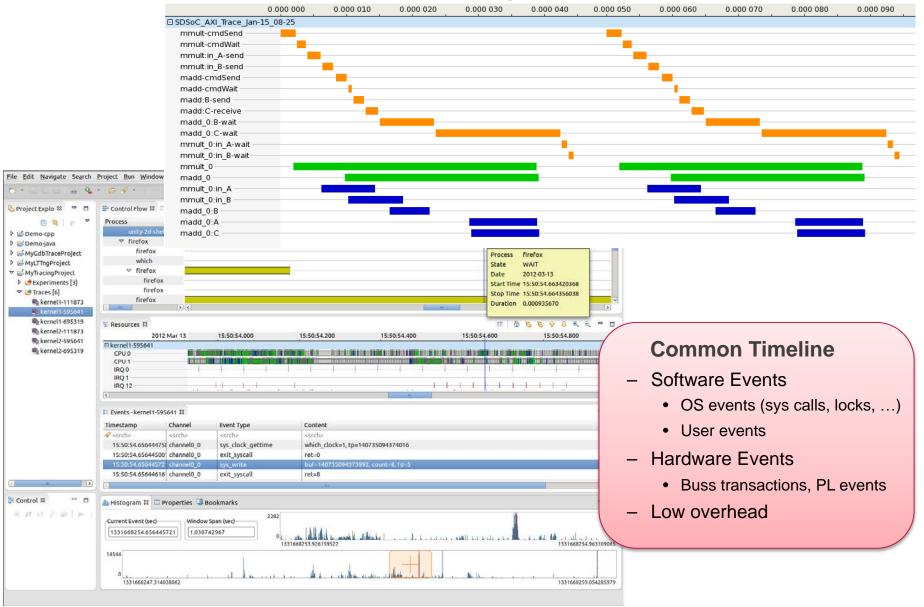
71% - Software

Development tools

Strong system level tools are critical for heterogeneous development

© Copyright 2016 Xilinx

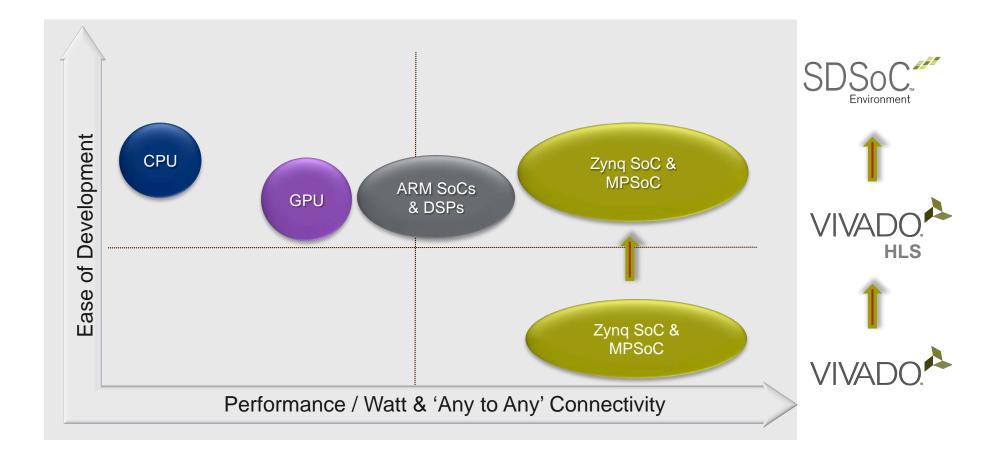
XILINX ➤ ALL PROGRAMMABLE.


PMU Performance Graphs 2 Perform	nance Counters 🛛 🗶 AX	Performance Graphs				Live tables
ARM Performance Counters						 ARM performance registers
	CPU0	CPU1				
1 Data Cache Miss Rate(%)	0.02114421	0.0				 Cache misses, IPC, …
Data Cache Access	5.013177678E9	0.0				, ,
2 Data Cache Miss Rate(%)	87.19937	-				 AXI performance registers
2 Data Cache Access	859520.0	-				
PU Stall Cycles Per Write Instruction	0.200464	0.0				 Transactions, latency, …
PU Stall Cycles Per Read Instruction	0.0498987	0.0				
XI Performance Counters						 Non-intrusive JTAG profiling
	HP0	HP1	HP2	HP3	ACP	
rite Transactions	9.8948214E7	9.8948226E7	1.03853698E8	1.03853682E8	1.16285522E8	
erage Write Latency	197.4663		andalone_bsp_0/ps7_cortexa9_0/libsrc/standa			
ite Latency - Std Dev	1.945468	File Edit Source Refactor Na	vigate Search Project Xilinx Tools Run		•	-d Quick Access Quick Access B □ □ C/C++ □ Performance
te Throughput (MB/sec)	96.2568	# Debug 12 Debug 12				DB Console % Breakpoints 🖾 Console & Terminal 1 🖬
		🔲 🎍 🖻 Performance Analysis usi			Serial: (COM5, 115200, 8, 1, None, Nor	ne - CONNECTED) - Encoding: (ISO-8859-1)
ad Transactions	1.08894021E8	# 20 APU			2-D FIR Fi Floating-Point Matrix Multip	plier 1 0.42 55.82 9202.27
erage Read Latency	175.2481	ARM Cortex-A9 MF	Core #0 (Suspended)	-	Integer Matrix Multip	
ad Latency - Std Dev ad Throughput (MB/sec)	1.609473 105.9321	APU Performance Summary	PL Performance PS Performance 12	MicroBlaze Performance Summary	MicroBlaze Performance CPU Instructions Per	<u>به 🖞 🖞 🔤 🗠 او</u>
Timeline Correlate perfo • Cache, buss	ormance	CPU Usili X-Axis: Plotting Interval Soms- clock cycles Y-Axis: CPU Usilization(%) (50) Description: CPU Usilization(%) number of active clock cycles	-33 million ARM processor ns interval) 50.0 -	è ;	8 9 10 Elapsed Time (sr — CPU0 — CPU1	
		by total number of CPU clock CPU Instructi X-Axis: Plotting Interval 50ms clock cycles	ons Per Cycle	11		1
Examples: • How does AC		Y-Axis: CPU Instructions Per Cy	Per Cycle is calculated as total			
Examples:	ate?	Y-Axis: CPU Instructions Per Cy Description: CPU Instructions P number of instructions divided	cle (SOMs interval) ere Cycle is calculated as total 1 by total number of active che Access -33 million ARM processor tierval) cess is the number of the ring the sampling interval 0.004 L			25 25 25 25 25 25 25 25 25 25 25 25 25 2

© Copyright 2016 Xilinx

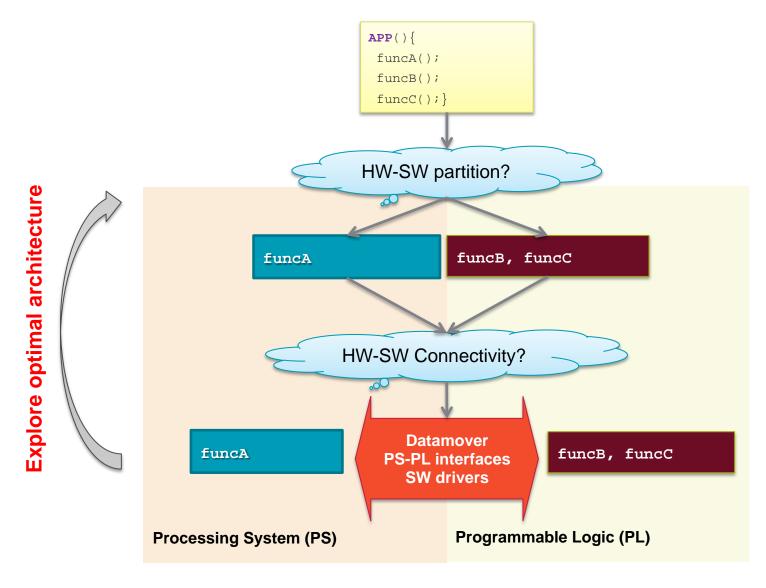
Edit Configuration			 Generate Traffic Pattern Pre-defined bitstream Configurable to emulate traf patterns on multiple ports Simultaneous CPU loading 				
Modify configurat							
Name: Performance Target Setup A Traffic Duration(sec Configuration: HD	Application 🖀 ATG	Configuration	↔ Arguments 👼 ▼ Rena		nbol Files 🖗	Config	urable app types pr pre-porting eval
Port Location	Template Id	Operation	Address Start	Address Next	Beats/tranx	Tranx interval	Est. Throughput
atg_acp	<none></none>						,
atg_acp	<none></none>						
atg_hp0	<custom></custom>	RD	ddr0	increment	16	34	376
atg_hp0	<none></none>						
atg_hp1	<none></none>						
atg_hp1	<custom></custom>	WR	ddr1	increment	16	34	376
atg_hp2	<custom></custom>	RD	ddr2	increment	16	34	376
atg_hp2	<none></none>						
atg_hp3	<none></none>				1.1		
atg_hp3	<custom></custom>	WR	ddr3	increment	16	34	376
							Apply Revert

Event Trace to Dissect Timing Issues

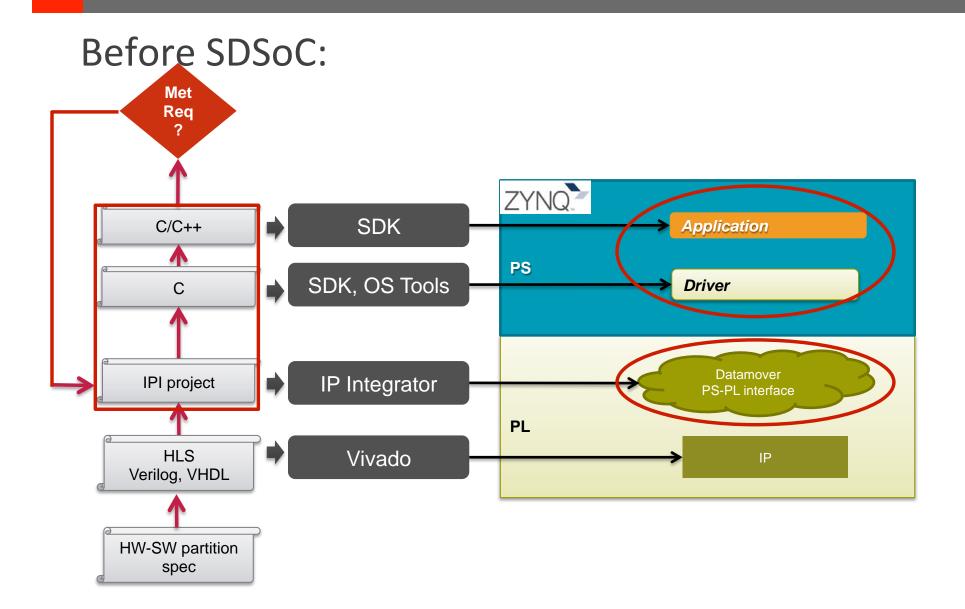


XILINX ➤ ALL PROGRAMMABLE.

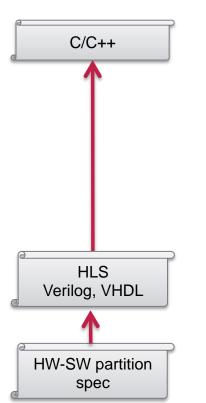
SDSoC: FPGA Development through Software



FPGA Productivity with Technology Advancement

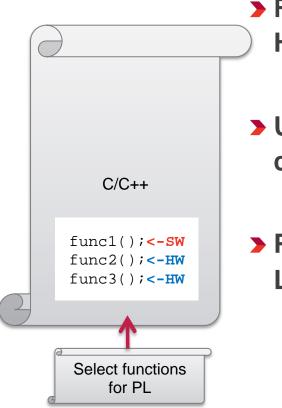


Typical Zynq Development Flow

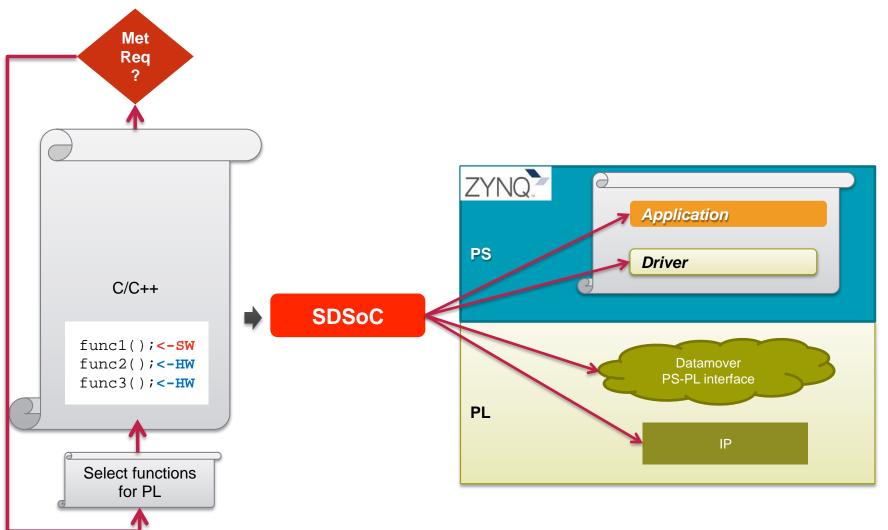


Need to modify multiple levels of design entry

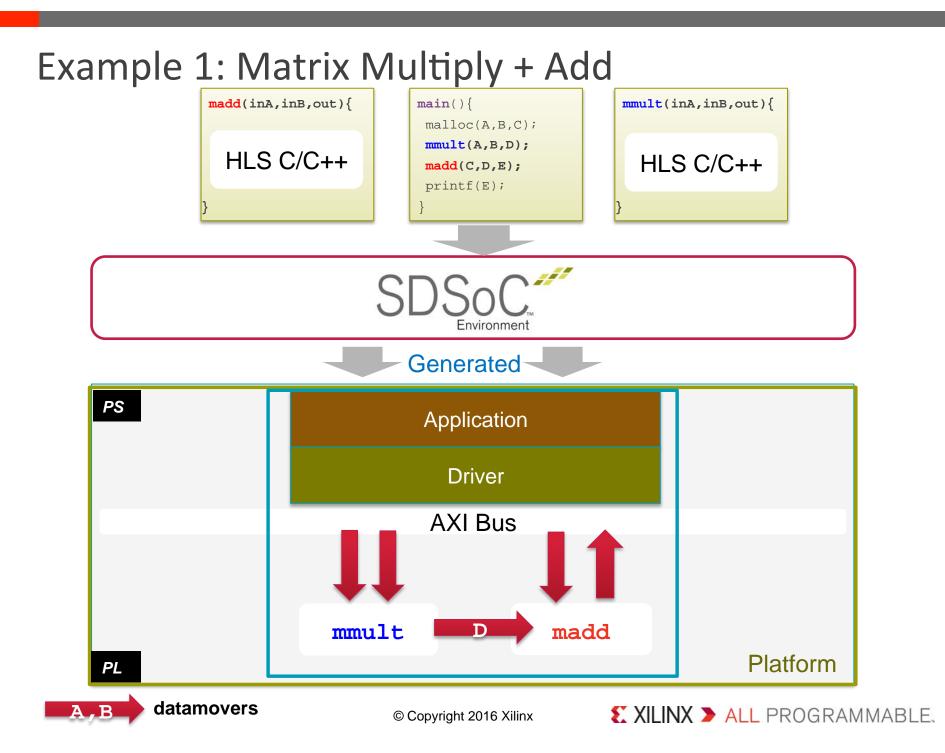
© Copyright 2016 Xilinx


After SDSoC:

Remove the manual design of SW drivers and HW connectivity


After SDSoC:

- Remove the manual design of SW drivers and
 HW connectivity
- > Use the C/C++ end application as the input calling the user algorithm IPs as function calls
- Partition set of functions to Programmable Logic by a single click



After SDSoC: Automatic System Generation

C/C++ to System in hours, days

© Copyright 2016 Xilinx

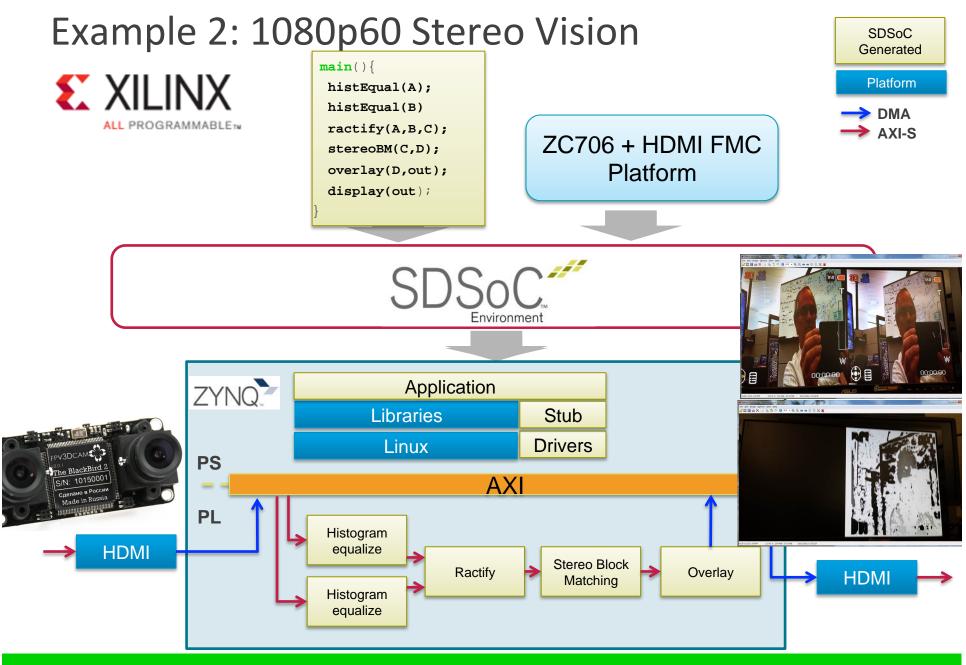


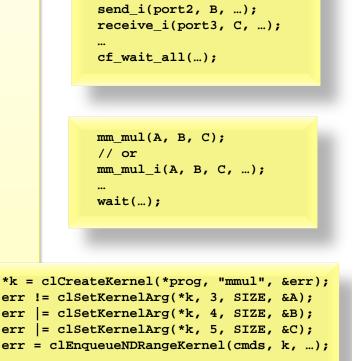
Image processing on the video I/Os via DDR3 memory

How to Call Accelerators - Programming Paradigms

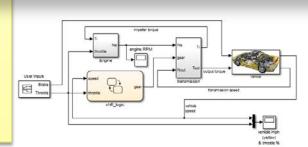
> Explicit Message Passing APIs

- Generic API to transfer data (send/receive, set/get)
- Tasks written in C/C++ (SW) and/or VHDL/Verilog (HW)
- Mental model: Threads communicating with each other

> Function call paradigm


- Standard function call paradigm
 - Synchronous or asynchronous
- Mental model: Call an accelerator that returns result

> Enqueue work items (OpenCL)


- Compile OpenCL host and kernels
- Kernels compiled to CPU/Neon or FPGA
- Mental model: Enqueue tasks to next available exec unit

> High level modeling

- MathWorks MATLAB/Simulink
- National Instruments LabView

send i(port1, A, ...);

No "right" way of doing this – Depends on application

© Copyright 2016 Xilinx

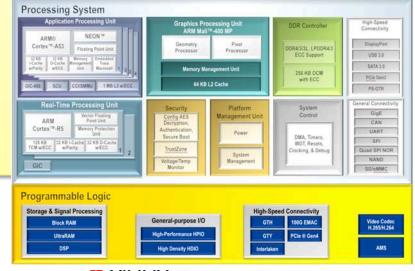
XILINX > ALL PROGRAMMABLE.

Summary

> Heterogeneous systems are here to stay

- And they will be increasingly complex

> Developing for heterogeneous systems is hard


- Each component might have its own language and operating environment
- Parallel programming is hard to get right

> New standards, tools, frameworks and APIs are here to help

- Hiding the complexity and unifying the environments

> Don't get stuck in old ways

- Embedded developers are conservative
- Never a good time to try new methodologies
- "Boiling frog" syndrome...

