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InTime High-Level View

[FPGA’15 Designer’s Day] Preliminary results on 
customer designs (limited ability to discuss 
specifics) 
[FCCM’15 Full] Extended results quantifying ML 
effects on open-source benchmarks  
[FPGA’16 Short] Case-for “design-specific” 
learning instead of building a generic model  
[FCCM’16 Short] Classifier accuracy exploration 
across ML strategies, and hyper-parameter tuning
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Outline
• Brief intro of InTime flow and ML techniques 

• Justifying the approach 
— Opportunity for using ML (Slack distribution) 
— The need for running ML (Entropy/Correlation) 

• Review of Feature Selection 

• Experimental results 
— Impact of features/run samples 
— ROC curves across designs 
— Comparing vs. FCCM’16 results
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How InTime works

• Simply tabulate results 
— record input CAD parameters + timing slack 

• Build a model for predicting [GOOD/BAD]
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Q&A

• Do this really work? 

• What’s the opportunity in timing slack spread? 

• Do we really need machine learning? 

• How unique are the final converged solutions? 

• What is the coverage scope of our tool?
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Results — No Learning
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Results — with Learning
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What’s the opportunity 
in timing slack spread?
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Parameter Exploration
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Do we really need 
machine learning?
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Results (aes)
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Results (aes)
best 

classification
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How unique are the final 
converged solutions?
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Dissimilarity
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What is the coverage 
scope of our tool?
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Entropy in solutions
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So, what’s the 
bottomline?
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Techniques

• OneR — use frequency of class labels 

• Information.Gain — uses entropy measure 

• Relief — clustering of parameters 

• Ensemble — combination of above…
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Q&A

• How effective is feature selection? 

• How long does the learning process take? 

• What is the impact of choosing feature count?
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How effective is 
feature selection?
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Classifier method doesn’t matter
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Baseline FCCM 2016 result
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2-3x reduction in parallel FPGA CAD runs
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Outlier — fails to meet timing and quits
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How long does it take 
to learn?
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Need atleast 20 runs
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Need 3 rounds x 30 runs configuration
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Better AUC the more we run
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How do we choose the 
correct subset of features
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Goldilocks zone
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Too many features — large training set
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Too few features — more data required for other features
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Conclusions

• Feature Selection helps boost AUC of InTime 
machine learning by ~10% 

• Key idea — prune the set of Quartus CAD tool 
parameters to explore to <22 

• Evidence continues to point towards design-
specificity
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Open-source flow

• We are open-sourcing our ML routines  
— http://bitbucket.org/spinosae/plunify-ml.git  
— README.md contains instructions for 
installing and running on your machine 

• Requires R (dependencies installed 
automatically)
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Impact of feature 
count
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Goldilocks zone
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Information.Gain consistently best
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Goldilocks zone
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