

Boosting Convergence of Timing Closure using Feature Selection in a Learning-driven Approach

Que Yanghua, Harnhua Ng, Nachiket Kapre yanghua.que@ntu.edu.sg, nachiket@ieee.org

 Feature Selection helps boost AUC scores for Timing Closure ML models by ~10%

- Feature Selection helps boost AUC scores for Timing Closure ML models by ~10%
- ML models predict timing closure of design by modifying CAD tool parameters — commercial tool InTime, by Plunify Inc.

- Feature Selection helps boost AUC scores for Timing Closure ML models by ~10%
- ML models predict timing closure of design by modifying CAD tool parameters — commercial tool InTime, by Plunify Inc.
- For Altera Quartus

— ~80 parameters to 8-22 influential parameters

FPGA CAD Flow

Bitstream (area, delay, power)

FPGA CAD Flow

CAD parameters

Bitstream (area, delay, power)

FPGA CAD Flow

CAD parameters

Position:

Verified RTL designs
expensive to edit
For timing closure, use
CAD parameters

Position: — Verified RTL designs expensive to edit

— For timing closure, use CAD parameters

InTime

free RTL, play with CAD
tool parameters
Problem: exhaustive
search intractable
Solution: use machine
learning!

[FPGA'15 Designer's Day] Preliminary results on customer designs (limited ability to discuss specifics) [FCCM'15 Full] Extended results quantifying ML effects on open-source benchmarks [FPGA'16 Short] Case-for "design-specific" learning instead of building a generic model **[FCCM'16 Short]** Classifier accuracy exploration across ML strategies, and hyper-parameter tuning

Outline

- Brief intro of InTime flow and ML techniques
- Justifying the approach

 Opportunity for using ML (Slack distribution)
 The need for running ML (Entropy/Correlation)
- Review of Feature Selection
- Experimental results
 - Impact of features/run samples
 - ROC curves across designs
 - Comparing vs. FCCM'16 results

Outline

- Brief intro of InTime flow and ML techniques
- Justifying the approach

 Opportunity for using ML (Slack distribution)
 The need for running ML (Entropy/Correlation)
- Review of Feature Selection
- Experimental results
 - Impact of features/run samples
 - ROC curves across designs
 - Comparing vs. FCCM'16 results

Position: — Verified RTL designs

- expensive to edit — For timing closure, use CAD parameters
- InTime

 free RTL, play with CAD
 tool parameters **Problem**: exhaustive
 search intractable **Solution**: use machine
 learning!

How InTime works

- Simply tabulate results
 record input CAD parameters + timing slack
- Build a model for predicting [GOOD/BAD]

How InTime works

Outline

- Brief intro of InTime flow and ML techniques
- Justifying the approach

 Opportunity for using ML (Slack distribution)
 The need for running ML (Entropy/Correlation)
- Review of Feature Selection
- Experimental results
 - Impact of features/run samples
 - ROC curves across designs
 - Comparing vs. FCCM'16 results

Q&A

- Do this really work?
- What's the opportunity in timing slack spread?
- Do we really need machine learning?
- How unique are the final converged solutions?
- What is the coverage scope of our tool?

Do this really work?

Results — No Learning

Quartus (1 run) -----

Run Count

Results — with Learning

Quartus (1 run) -----

Run Count

What's the opportunity in timing slack spread?

Parameter Exploration

Do we really need machine learning?

Results (aes)

Results (aes)

best classification

How unique are the final converged solutions?

Dissimilarity

What is the coverage scope of our tool?

Entropy in solutions

overall good.half

So, what's the bottomline?

Outline

- Brief intro of InTime flow and ML techniques
- Justifying the approach

 Opportunity for using ML (Slack distribution)
 The need for running ML (Entropy/Correlation)
- Review of Feature Selection
- Experimental results
 - Impact of features/run samples
 - ROC curves across designs
 - Comparing vs. FCCM'16 results

Hypothesis: Not all CAD
 parameters affect timing
 outcome

- **Hypothesis**: Not all CAD parameters affect timing outcome
- Can we find the most relevant parameters?

- Hypothesis: Not all CAD
 parameters affect timing
 outcome
- Can we find the most relevant parameters?
- Feature selection: known technique in ML circles

 avoid noise during classification
 avoid over-fitting

- Hypothesis: Not all CAD parameters affect timing outcome
- Can we find the most relevant parameters?
- Feature selection: known technique in ML circles

 avoid noise during classification
 avoid over-fitting

Techniques

- OneR use frequency of class labels
- Information.Gain uses entropy measure
- Relief clustering of parameters
- Ensemble combination of above...

Outline

- Brief intro of InTime flow and ML techniques
- Justifying the approach

 Opportunity for using ML (Slack distribution)
 The need for running ML (Entropy/Correlation)
- Review of Feature Selection
- Experimental results
 - Impact of features/run samples
 - ROC curves across designs
 - Comparing vs. FCCM'16 results

- How effective is feature selection?
- How long does the learning process take?
- What is the impact of choosing feature count?

How effective is feature selection?

Classifier method doesn't matter

Baseline FCCM 2016 result

How long does it take to learn?

Better AUC the more we run SOC — autom_jpn — net_chn4 — net_isr2 — office_jpn2 net_chn3 💻 net_isr1 VIP net_isr3 Area Under Curve (AUC) 20 40 50 100 150 200 30 Training Size (Number of CAD Runs)

How do we choose the correct subset of features

Too many features — large training set

Too few features — more data required for other features

Conclusions

- Feature Selection helps boost AUC of InTime machine learning by ~10%
- Key idea prune the set of Quartus CAD tool parameters to explore to <22
- Evidence continues to point towards designspecificity

Open-source flow

- We are open-sourcing our ML routines

 <u>http://bitbucket.org/spinosae/plunify-ml.git</u>
 README.md contains instructions for installing and running on your machine
- Requires R (dependencies installed automatically)

Impact of feature count

Goldilocks zone

Information.Gain consistently best

