Hardware Acceleration of Feature Detection and Description Algorithms on Low-Power Embedded Platforms

Onur Ulusel, Christopher Picardo, Christopher Harris, Sherief Reda, R. Iris Bahar, School of Engineering, Brown University

Image Processing in Mobile Systems

- Image processing is everywhere!
 - Input data has changed from words/numbers to images
 - Sensors have improved dramatically
- Image processing is a major driving factor in technological advancement
 - Autonomization relies on image processing
- Mobile/Embedded platforms??
 - Real-time computing + limited data bandwidth
 - ➔ prefer local computing to offloading to cloud
 - BUT image processing can be very computationally intensive and power hungry

www.guardiantv.com

Accelerating Image Processing on Low Power Embedded Platforms

- Meeting real time image processing requirements for many of these applications requires HW assisted acceleration
- Which algorithms do we accelerate?
 - Feature detection and feature description are key building blocks for image retrieval, biometric identification, visual odometry, etc.
 - Computational efficient detection and analysis of image features is critical for performance and energy-efficiency

Retrieved

mages

Hardware Acceleration for Energy **Constrained Image Processing**

- Low power embedded platforms
 - Field Programmable Gate Arrays (FPGAs)
 - Graphical Processing Units (GPUs)
 - Low power general processors

Our Contributions

- Comparative study of feature detection and description algorithms
 - What are their computation kernel characteristics?
- Comparative study of platforms for *embedded* applications *– Advantages/disadvantages of each platform?*
- Accelerating algorithms on different platforms
 - How can algorithms be modified to better exploit available hardware of each platform?
 - How does performance compare in terms of run time and energy consumption?

Feature Detection

• What is a 'feature'?

- An "interesting" part of an image that can be used to identify objects

• Examples: Edges, corners, ridges, blobs

Feature Description

- Given the features, uniquely describe them so they can be matched in other images
- Descriptors summarize characteristics of the features
 - E.g., intensity, orientation
- Descriptors should be distinctive and insensitive to local image deformations.

Images from: R. Szeliski, Computer Vision: Algorithms and Applications

Accuracy and Run-time Comparisons

- HoG (Histogram of Gradient) based Descriptors
 - SIFT: Scale-Invariant Feature Transform
 - SURF: Speeded Up Robust Features
- Binary Feature Descriptors
 - BRIEF: Binary Robust Independent Elementary Features
 - BRISK: Binary Robust Invariant Scalable Keypoints

FAST: Features from Accelerated Segment Test

Rosten and Drummond, ECCV'06

 \otimes

Bresenham Circle 12-pixel continuity? → If so then feature
Pre-compare pixels 1, 5, 9, and 13 to determine possibility for continuity
On average 98.5% of the comparisons fail the

5 6

7

8 9 10 11 12 13 14 15 16

continuity test at the pre-compare stage

BRIEF: Binary Robust Independent Elementary Features

- Compare intensities of pairs of points using Hamming distance
- BRIEF Sampling pattern
 - -512 sampling pairs
 - -For each pair, X_i is at (0,0) and Y_i takes all possible values from coarse polar grid
 - Sampling pairs are generated from a 31×31 region around center pixel

Chosen sampling pattern results in a 512-bit characterization array

BRISK: Binary Robust Invariant Scalable Keypoints

- BRISK uses custom sampling pattern
- 512 sampling pairs generated from a 31×31 region (like BRIEF)
- Distinguishes between *short/long pairs*
 - Short pairs used similar to BRIEF to generate descriptor vectors based on *intensity comparisons*
 - Long pairs used for *orientation computation* by rotating sampling
 pattern

Algorithm Flowchart

- FAST feature detection + BRIEF feature description
- Obtaining sampling window for feature description requires irregular access pattern

Algorithm Flowchart

- FAST feature detection + BRISK feature description
- BRISK requires an extra step for orientation compensation
 - A significant amount of extra hardware resources for this step

Experimental Embedded Platforms

- **FPGA**: MicroZED development board:
 - 28nm Zynq 7020 SoC
 - Artix-7 FPGA + 1GB DDR3
 - dual-core Arm Cortex A9 CPU (for debug and init. only)
- GPU & CPU: Jetson TK1 development kit
 - 28nm Tegra K1 SoC
 - Kepler GPU with 192 CUDA cores @ 950MHz
 - Quadcore ARM Cortex A15 CPU @ 2.5GHz (single core activated)
 - 2GB Memory
 - Running OpenCV versions of FAST, BRIEF, BRISK

BRIEF Descriptor

BRISK Descriptor

Results: Run-time

Results: Power & Energy

(detection) (detection + description)

21

Results: Profiling

Not Selected Memor Throttle Pipe Busy Execution Dependency 0.0% 5.0% 10.0% 20.0% 35.0% 40.0% 45.0% 15.0% 25.0% 30.0% Description Detection (BRIEF) (FAST)

Stall Reasons during GPU Computation

- Feature description stalled due to memory throttle
 - Needs better data management

Instruction Distribution

- Feature description for GPU implementation has bump in load/store ops
 - Almost 10X more than just FAST

Results: FPGA Resource Utilization

- BRISK requires significant amount of extra resources for smoothing and orienting
- Extra resources do not translate to much extra power

Conclusions

- FPGA outperforms CPUs and GPUs in terms of power & performance
 - FAST + BRISK: 36 fps vs. 147 fps
 - FPGA amenable to various HW optimizations:
 - deep pipelining, optimized memory access, pre-computation
- FGPA implementations better for handling multiple kernels
 - For GPUs, multiple kernels highly bounded by kernel scheduler and memory bottlenecks
 - FPGA customization on layers better for tackling operations on multiple kernels.
- Use profiling on GPU implementation as first step to FPGA optimization
 - identify nature of bottlenecks
 - Customized FPGA HW can often better manage certain types of bottlenecks