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Introduction and Motivation

¢ Free-Space Optical (FSO) vs. Free- Free Space Optical Communications
Space Radio-Frequency (FSRF)
communications RS
= Larger Bandwidth

= |Lower Cost, Power, Mass of
implementation

= Improved Security & i \

& Secure FSO communications
= Usually use laser N-slit-interferometers

Over relatively short propagation distances,
particularly for deep-space communication
» Terrestrial applications > Several kilometers

» Space applications > Several thousand
kilometers (2,000-10,000 km)

¢ Security and Long-Range FSO

communications
= Conflicting requirements

System
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Approach

4 Chaotic Systems
= First presented by E. N. Lorenz in 1963

= Display well defined, but extremely complex dynamic
behaviors

Broadband noise-like signals similar to spread-spectrum
signals

Multi-path fading resistance

Unpredictability

Sensitivity to initial conditions

= Difficult for unintentional receivers to synchronize to the
chaotic signal - Security

rd Ao

SPACE FLIGHT CENTER

¢ Pyramidal Filtering Structures
= Discrete Wavelet Transformation (DWT)

Minimize scintillation noise

» Usually found in space-to-ground, near-Earth, and terrestrial
communications

& FPGAs

= Stringent real-time requirements of FSO communications
Transmission Rates > 1 Gbps
Bit-Error-Ratios (BER) < 107
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Proposed System Architecture
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Chaotic Transmitter & Receiver
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Chaotic Transmitter & Receiver
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Peak Detector & Data Synthesizer/Reconstructor
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RESIES

Performance and FPGA Resource
Utilization of a Single-Engine Prototype

FPGA Device: xc6vix240t
Package: ff1156
Speed Grade: -1
FPGA Resource Used Available Sl oy
(%)
Slice Registers 630 301,440 1
Slice LUTs 958 150,720 1
Occupied Slices 368 37,680 1
RAMB36E1 6 416 1
ML605 Board
(Virtex-6 FPGA) DSP48E1 24 768 3

Bonded 10Bs 51 600 8
Detection Precision (bits) 28
Clock Frequency (MHz) 200
Throughput (Gbps) 5.6
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BER

RESIES
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Summary and Conclusions

¢ FSO and Chaotic systems combined
= Longer-range communication
= Inherent security in chaotic systems
= Targeting both space and terrestrial applications

& Haar DWT employed
= Attenuate the undesired effects of FSO channels

= Relative success based on static thresholding

¢ Bit-Error-Ratio (BER) measured
= Different levels of noise of different types, such as scintillations and additive white Gaussian noise (AWGN) with zero-mean

& FPGAs proposed
= Could comfortably accommodate the stringent real-time requirements of FSO
=  Prototyped utilizing Xilinx Virtex-6 ML605 board Daa Detection

& Future work
= |Improving BER using adaptive thresholding and optimized peak detection
= |ncreasing the dynamic range of the system, e.g. SNR ranging from -20 dB to 50 dB
= |nvestigating Doppler effects
= |nvestigating chaotic masking Mi%-ﬁ.ﬂ-i
= |Interfacing with FSO optics o
= Integrating with LCRD and other NASA missions
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