

Chaotic Architectures for Secure Free-Space Optical Communication

Esam El-Araby[†], and Nader Namazi^{††}

[†]University of Kansas (KU) ^{††}Catholic University of America (CUA)

August 30th, 2016

Introduction and Motivation

Approach

- Implementation Architecture
- Results and Future Work
- Summary and Conclusions

Introduction and Motivation

Free-Space Optical (FSO) vs. Free-Space Radio-Frequency (FSRF) communications

- Larger Bandwidth
- Lower Cost, Power, Mass of implementation
- Improved Security

Secure FSO communications

- Usually use laser N-slit-interferometers
 - Over relatively short propagation distances, particularly for deep-space communication
 - » Terrestrial applications \rightarrow Several kilometers
 - » Space applications → Several thousand kilometers (2,000-10,000 km)
- Security and Long-Range FSO communications
 - Conflicting requirements

Introduction and Motivation

Approach

- Implementation Architecture
- Results and Future Work
- Summary and Conclusions

Approach

Chaotic Systems

- First presented by E. N. Lorenz in 1963
- Display well defined, but extremely complex dynamic behaviors
 - Broadband noise-like signals similar to spread-spectrum signals
 - Multi-path fading resistance
 - Unpredictability
 - Sensitivity to initial conditions
- Difficult for unintentional receivers to synchronize to the chaotic signal → Security

Pyramidal Filtering Structures

- Discrete Wavelet Transformation (DWT)
 - Minimize scintillation noise
 - » Usually found in space-to-ground, near-Earth, and terrestrial communications

FPGAs

- Stringent real-time requirements of FSO communications
 - Transmission Rates > 1 Gbps
 - Bit-Error-Ratios (BER) < 10⁻⁷

Laser Communications Relay Demonstration (LCRD)

Introduction and Motivation

Approach

Implementation Architecture

- Results and Future Work
- Summary and Conclusions

Proposed System Architecture

Chaotic Transmitter & Receiver

Chaotic Transmitter & Receiver

 $\Rightarrow f_v(n)$

Peak Detector & Data Synthesizer/Reconstructor

FPL 2016 - August 30th, 2016

Introduction and Motivation

Approach

Implementation Architecture

Results and Future Work

Summary and Conclusions

Results

Performance and FPGA Resource Utilization of a Single-Engine Prototype

FPGA Device: xc6vlx240t Package: ff1156 Speed Grade: -1			
FPGA Resource	Used	Available	Utilization (%)
Slice Registers	630	301,440	1
Slice LUTs	958	150,720	1
Occupied Slices	368	37,680	1
RAMB36E1	6	416	1
DSP48E1	24	768	3
Bonded IOBs	51	600	8
Detection Precision (bits)	28		
Clock Frequency (MHz)	200		
Throughput (Gbps)	5.6		

Results

Aperiodic NRZ Data Transmitted Over a Noisy FSO Channel (SNR = 20dB)

Summary and Conclusions

FSO and Chaotic systems combined

- Longer-range communication
- Inherent security in chaotic systems
- Targeting both space and terrestrial applications

Haar DWT employed

- Attenuate the undesired effects of FSO channels
- Relative success based on static thresholding
- Bit-Error-Ratio (BER) measured
 - Different levels of noise of different types, such as scintillations and additive white Gaussian noise (AWGN) with zero-mean
- FPGAs proposed
 - Could comfortably accommodate the stringent real-time requirements of FSO
 - Prototyped utilizing Xilinx Virtex-6 ML605 board

Future work

- Improving BER using adaptive thresholding and optimized peak detection
- Increasing the dynamic range of the system, e.g. SNR ranging from -20 dB to 50 dB
- Investigating Doppler effects
- Investigating chaotic masking
- Interfacing with FSO optics
- Integrating with LCRD and other NASA missions

Data Detection

Threshold Kalman

Estimation

THA NK YOU

