An Evaluation on the Accuracy of the Minimum Width Transistor Area Models in Ranking the Layout Area of FPGA Architectures

Farheen Fatima Khan and Andy Ye Ryerson University, Canada

Motivation

> Increasing FPGA based SOC designs
> Reconfigurable fabrics benefit applications
> Non-FPGA companies may use FPGA fabric
> Accurate estimation of layout area
> Early floorplanning

Current Area Model

\square poly
\square diffusion

Area in terms of λ $16 \lambda \times 13 \lambda=208 \lambda^{2}$

Drawback - wiring \& diffusion sharing not considered

VPR Area Model

$\Rightarrow \operatorname{Area}(\mathbf{x})=0.5+0.5 \mathrm{x}$

```
\(1 \mathrm{mwt}=208 \lambda^{2}\)
```

- Area in terms of $\boldsymbol{\lambda}$
when $\mathrm{x}=1$; 1 mwt $->$ 208 N^{2}

$$
x=2 ; 1.5 \mathrm{mwt}->31 \mathbf{2} \lambda^{2}
$$

COFFE Area Model

nMOS transistors

- $\operatorname{Area}(\mathbf{x})=0.447+0.128 x+0.391 \sqrt{ } \mathrm{x}$
when $x=1 ; 0.97$ mwt -> 200.93 λ^{2}
CMOS transistors
- $\operatorname{Area}(\mathrm{x})=0.518+0.127 x+0.428 \sqrt{ } \mathrm{x}$
when $x=1 ; 1.07$ mwt -> 223.18 \mathbf{N}^{2}

FPGA building blocks

>nMOS based Components

- Encoded and Decoded Multiplexers
>CMOS based Components
- Buffers
- Full adders

Models accuracy at ranking different FPGA architectures ?

Encoded Multiplexer

Decoded Multiplexer

- 8:1 Decoded Multiplexer
- two level multiplexer

2:1 Multiplexer

Two discrete transistors

Transistors with diffusion sharing

Effect of folding on area

Transistor size	without folding	with $\mathbf{2}$ folds	with 3 folds
$4 x$	$600 \lambda^{2}$	$680 \lambda^{2}$	$802 \lambda^{2}$
$6 x$	$792 \lambda^{2}$	$840 \lambda^{2}$	$952 \lambda^{2}$
$10 x$	$1176 \lambda^{2}$	$1160 \lambda^{2}$	$1250 \lambda^{2}$
$12 x$	$1368 \lambda^{2}$	$1320 \lambda^{2}$	$1400 \lambda^{2}$

Transistors with small drive strengths

$$
\text { Active_Area }{ }_{2: 1 \text { mux }}=\left(9+4 w_{\text {eff }}\right) 24 \lambda^{2}
$$

Transistors with large drive strengths

$$
\text { Active }_{-} \text {Area }_{2: 1 m u x}=\frac{\left(9 n+4 w_{e f f}\right)(2 n+1) 8}{n} \lambda^{2}
$$

Note, if $n=1$, the above equation is the same as previous equation

$$
\begin{aligned}
\text { Active }_{-} \text {Area }_{2: 1 m u x} & =\frac{\left(9 n+4 w_{e f f}\right)(2 n+1) 8 \lambda^{2}}{n \times 208 \lambda^{2}} m w t \\
& =\frac{\left(9 n+4 w_{e f f}\right)(2 n+1)}{26 n} m w t
\end{aligned}
$$

Differentiating with respect to \mathbf{n}

$$
\begin{gathered}
\frac{\text { Active_Area }_{2: 1 m u x}}{\partial n}=\left(\frac{18}{26}-\frac{4 w_{e f f} n^{-2}}{26}\right) m w t=0 \\
n^{2}=\frac{4 w_{e f f}}{18}
\end{gathered}
$$

$$
n=\left[\frac{\sqrt{2 w_{e f f}}}{3}\right]=\left[0.471 \sqrt{w_{\text {eff }}}\right], n \geq 1
$$

$$
n \text { is thenumberof foldsof transistor }
$$

$$
\text { with drivestrength } w_{e f f}
$$

Layout Strategy

Mirroring Technique 5 LUT

Layout strategy for decoded multiplexer

Buffers - Multistage Buffer

diffusion sharing

Full adder

Results

>Active area comparison >Layout area

- number of metals used
- Encoded \& Decoded multiplexer
. 1x transistor size
. change in transistor size
- CMOS based components .buffers and full adder

Active area calculation

> Encoded Multiplexer

$$
\text { Active }_{-} \text {Area }_{k-L U T}=\left(2^{k}-1\right) \text { Active }_{-} \text {Area }_{2: 1 m u x}
$$

k is number of inputs to LUT

> Decoded Multiplexer

$$
\text { Active_ }_{-} \text {rea }_{z: 1} \text { dmux }=\left(\frac{z}{2}+1\right) \text { Active }_{-} \text {Area }_{2: 1 m u x}
$$

z is number of inputs to decoded multiplexer

Active area comparison - Part I

VPR : overestimates 33\% to 139\%

COFFE : - overestimates for 1x-6x transistor sizes 14% to 29%

- very close for large transistor sizes

Part II

VPR : - underestimates $1 x$ inverter 4\% - overestimates larger inverters, buffers \& full adder 72\%

COFFE : - underestimates for inverters 18\%

- overestimates
for full adder 46\%

Full layout area metal layers

Example: INTEL 45nm Metal Stack

Layer	thickness (nm)	width (nm)	pitch(nm)
M9	$7 \mu \mathrm{~m}$	$17.5 \mu \mathrm{~m}$	$30.5 \mu \mathrm{~m}$
M8	720	400	810
M7	504	280	560
M6	324	180	360
M5	252	140	280
M4	216	120	240
M3	144	80	160
M2	144	80	160
M1	144	80	160

Encoded \& Decoded Multiplexer

Multiplexers - 1x transistor size

Multiplexers - 1x transistor size

COFFE

Metal	Multiplexer Type	min	max	net variation
2 metal	Encoded	57%	60%	3%
	 Decoded	39%	60%	$\mathbf{2 1 \%}$
	Encoded	45%	56%	11%
	 Decoded	25%	56%	31%

Effect of transistor size

Effect of transistor size

Metal	$\begin{array}{c}\text { Multiplexer } \\ \text { Type }\end{array}$	min	max	$\begin{array}{c}\text { net } \\ \text { variation }\end{array}$
	$\begin{array}{l}\text { Encoded 1x } \\ \end{array}$	$\begin{array}{l}\text { Encoded \& } \\ \text { Decoded 1x }\end{array}$	37%	60%
	$\begin{array}{l}\text { Encoded \& } \\ \text { Decoded 6x }\end{array}$	27%	60%	33%

FPGA CMOS Components

$>$ circuit topology and wiring demand differs for CMOS components

Conclusion

> Minimum width transistor area model

- analyzed for commonly used FPGA components
- VPR underestimates : encoded multiplexers and small size buffers overestimates : decoded multiplexers with large transistor sizes, large size buffers and full adders.
-COFFE underestimates : buffers and encoded and decoded multiplexers overestimates : full adders.
> Variation in area is due to
- different components have different circuit topologies
> Accurate FPGA area model
- consider connectivity and grouping of adjacent transistors
- component by component area model

Thank You.

