

An Investigation into a Circuit Based Supply Chain Analyzer for FPGAs

FPL-2016 9/1/2016

Jacob Couch¹
John Arkorian
Staff Researchers
¹jacob.couch@jhuapl.edu

What is the problem anyways?

• How can FPGAs be protected from supply chain vulnerabilities?

 Counterfeit and mislabeled FPGAs make their way into trusted systems.

- > Early failure rates
- > Subgrade performance
- > Unintended functionality

But has this actually happened?

Examples [1]

- USN P-8A Ice Detection System (FPGA)
- > USN SH-60B Forward Looking InfraRed (ASIC)
- USAF C-130J Pilot Display System (ASIC)

But we already have PUFs for this...

- Physically Unclonable Functions provide a mechanism to uniquely identify a specific die through a set of challenges with a priori knowledge.
- These challenges provide either a 1 or 0 whose goal is to be stable across many different environmental conditions.

^[3] A. Maiti and P. Schaumont, "Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive," Journal of Cryptology, vol. 24, no. 2, pp. 375-397, Oct. 2010. [4] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, "The buttery PUF protecting IP on every FPGA," in 2008 IEEE HOST. IEEE, Jun. 2008, pp. 67-70.

But I always buy trusted new FPGA designs...

- Many critical systems are still in limited production.
 - > FPGA code can't be easily ported to a new platform without a recompilation.
 - > This may trigger a new round of verification for the product to remain certified.
 - > The economic case doesn't exist to recertify this product on a new FPGA.
- Counterfeit products are estimated to affect the global economy by over 1 trillion dollars.
- Counterfeit electronics are estimated to have a \$169 billion impact.
- Counterfeit programmable logic is estimated to have a \$2 billion impact. [6]

Why should I care about counterfeit parts?

FPGA based systems have a long lifetime.

Current methods of Supply Chain Management rely on initial

verification procedures for parts.

Electrical

[7] S. Drimer, "Volatile FPGA design security a survey."

[8] M. Tehranipoor, U. Guin, and D. Forte, "Counterfeit Integrated Circuits". Springer International Publishing, 2015.

Where can I be attacked?

 Multiple attack vectors that cannot always be protected by policy and procedures.

[9]

[9] U. Guin, D. DiMase, and M. Tehranipoor, "Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges Ahead," Journal of Electronic Testing, vol. 30, no. 1, pp. 9-23, Feb. 2014.

Hasn't this already been done before?

Comparison of existing techniques by extending existing research.

IDs	Reliability	Uniqueness	Unclonable	Manufacturability	Cost effectiveness	Ease-of-Use
QR codes (Physical Artifact)	Not verified	Medium	Medium	Not verified	Not verified	High
DNA markings	Low	Low	Low	Low	Low	Medium
Nanorods (Physical Artifact)	Not verified	High	High	Not verified	Not verified	Medium
Physically Uncloneable Functions	Not verified	High	High	Not verified	Not verified	Medium
Scanning Electron Microscope	High	N/A	N/A	N/A	Low	High
Chemical Analysis	Medium Low	Low	Low	High	Low	Low
Foundry Identification[36]	Medium Low	Low	Low	N/A	Medium	Medium High
Recycled FPGA Detection[35]	Medium Low	Medium Low	Medium	N/A	Medium	Medium High

How does this work?

- Multiple large ring oscillators are placed across the FPGA.
- They are measured against an external clock source.
 - This is in contrast to existing PUF implementations where a scalar value is generated for each measurement. Not a binary result.
- Goal is to detect inter lot variation and die aging variation.

How does this work?

- The 8 ring oscillators(ROs) were broken into the following lengths:
 - > 4x256, 2x512, 2x1024.
- Two of the 256 ROs were constrained to the edges of the FPGA.
- Ring oscillators were constrained to 15-100% of the FPGA.

What can we do with this information?

- Method for discriminating between FPGA lots.
- Used in determining lot integrity.

What can we do with this information?

- Method for discriminating between baked FPGA chips.
- Used for detecting tampered chips with adequate baselines.

What are we looking for?

- All chips have a initial burn in procedure.
- If the "Infant Mortality Failure" and Wear Out Failure curves are modified, mission objectives may be compromised. [10]

 Slight differences can be identified between the lots for two different ring oscillators.

Note: y-axis is frequency in Hertz, y-axis is number of elements in histogram bin.

 This data can then be utilized in a Support Vector Machine (SVM) to perform classification of results.

Note: Both x and y axis are frequency in Hertz.

- This can be further expanded to utilize all 8 dimensions of measurements.
- Single digit error rates.

Training

	Linear	RBF .000005	RBF .000001	RBF .0000005	RBF .0000001
.3	62/2760	0/2760	0/2760	0/2760	0/2760
.5	76/4184	0/4184	0/4184	0/4184	0/4184
.7	128/6120	0/6120	0/6120	0/6120	0/6120

Novel Data

	Linear	RBF .000005	RBF .000001	RBF .0000005	RBF .0000001
.3	128/6120	227/6120	100/6120	89/6120	84/6120
.5	70/4184	115/4184	54/4184	47/4184	43/4184
.7	45/2760	52/2760	17/2760	18/2760	11/2760

Note: x-axis is Gamma Values for RBF, y-axis is percentage of training data.

- This graph shows the gradual decrease in frequency of a part.
- Each part is exposed to multiple baking processes.
 - This simulates the removal from a PCB board in addition to the burn-in process.

Note: y-axis is frequency in Hertz, y-axis is number of elements in histogram bin.

 Error rates are higher than the lot identifiers, but are still around 10% for RBF kernels.

Training Data

	rianing Data							
	Linear	RBF .00005	RBF .00001	RBF .000005				
.3	390/1080	1/1080	1/1080	1/1080				
.5	N/A	0/1800	3/1800	6/1800				
.7	N/A	0/2520	2/2520	8/2520				
.9	N/A	0/3240	3/3240	10/3240				

Novel Data

	Linear	RBF .00005	RBF .00001	RBF .000005
.3	1098/2520	454/2520	287/2520	235/2520
.5	N/A	242/1800	165/1800	113/1800
.7	N/A	122/1080	92/1080	77/1080
.9	N/A	51/360	39/360	32/360

Note: x-axis is Gamma Values for RBF, y-axis is percentage of training data.

Analysis—Supply Chain Integrity Measurer for FPGAs

How does this fit into existing research?

IDs	Reliability	Uniqueness	Unclonable	Manufacturability	Cost effectiveness	Ease-of-Use
QR codes						
(Physical Artifact)	Not verified	Medium	Medium	Not verified	Not verified	High
DNA markings	Low	Low	Low	Low	Low	Medium
Nanorods (Physical Artifact)	Not verified	High	High	Not verified	Not verified	Medium
Physically Uncloneable Functions	Not verified	High	High	Not verified	Not verified	Medium
Scanning Electron						
Microscope	High	N/A	N/A	N/A	Low	High
Chemical Analysis	Medium Low	Low	Low	High	Low	Low
Foundry						
Identification[36]	Medium Low	Low	Low	N/A	Medium	Medium High
Recycled FPGA						
Detection[35]	Medium Low	Medium Low	Medium	N/A	Medium	Medium High
Modified RO: Lot-ID	Medium Low	Medium Low	Medium	N/A	Medium	Medium High
Modified RO: Life cycle	Medium Low	Medium Low	Medium	N/A	Medium	Medium High

Analysis—Supply Chain Integrity Measurer for FPGAs

How does this fit into existing techniques?

Avoidance Technique	Reliability	Destruct- iveness	Implementation Difficulty	Detection Difficulty	Implementation Cost	Identification Mechanism
Physically Unclonable Functions	Medium	None	Medium	Low	High	Individual die
Physically Identifiable Artifact	Low	None	Low	Low	Low	Individual die
Scanning Electron Microscope	High	Yes	None	High	None	Difference between two dies
Chemical Analysis	Medium Low	Yes	Medium	High	Medium	Difference between two dies
Foundry Identification[36]	Medium Low	None	Low	Medium	Medium	Manufacturing foundry
Recycled FPGA Detection[35]	Medium Low	None	Low	Medium	Medium	Golden model comparison
Modified RO: Lot-ID	Medium Low	None	Low	Medium	Medium	Manufacturin lot
Modified RO: Life cycle	Medium Low	None	Low	Medium	Medium	Individual die re-flow

Future Work-Supply Chain Integrity Measurer for FPGAs

- Additional vectors of data need to be integrated into the SVM for better analysis.
 - > More manufacturing lots.
 - > Advise from vendors on manufacturing processes.
- Additional test cases should be evaluated to further fine-tune the ring oscillators.
 - Develop process to further identify attribute points.
 - > Further investigate placement properties.

Conclusions-Supply Chain Integrity Measurer for FPGAs

- New technique to actively measure the "health status" of FPGAs.
 - > Lot/foundry discrimination.
 - > FPGA aging/baking discrimination.
- This status can be used in conjunction with other techniques to improve active measurements of FPGAs to assist with supply chain decisions.
 - > Assist in obtaining/validating older FPGAs.

Acknowledgements

- Thanks to Dr. Peter Athanas, Dr. Jonathan Black, Dr. Charles Clancy, Dr. Robert McGwier, Dr. Neil Steiner for advise on this project and serving on my PhD committee!
- Thanks to Dr. Patrick Schaumont, for advise on the PUFs and ensuring proper Ring Oscillator generation to optimize artifact collection.

Questions?

