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What is the problem anyways?

= How can FPGAs be protected from supply chain
vulnerabilities?

= Counterfeit and mislabeled FPGAs make their way
into trusted systems.

> Early failure rates
> Subgrade performance
> Unintended functionality




But has this actually happened?

= Examples [1]
> USN P-8A Ice Detection System (FPGA)
> USN SH-60B Forward Looking InfraRed (ASIC)
> USAF C-130J Pilot Display System (ASIC)

3 [11 J. Villasenor and T. Mohammad. “The Hidden Danagers of Chop-Shop Electronics.” IEEE Spectrum. 2013. w



But we already have PUFs for this...

= Physically Unclonable Functions provide a mechanism to uniquely identify a
specific die through a set of challenges with a priori knowledge.

= These challenges provide either a 1 or 0 whose goal is to be stable across
many different environmental conditions.
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Arbiter PUF [3] Butterfly PUF [4] Ring Oscillator PUF [5]

[3] A. Maiti and P. Schaumont, “Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive," Journal of Cryptology, vol. 24, no. 2, pp. 375-397, Oct. 2010.
[4] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The buttery PUF protecting IP on every FPGA," in 2008 IEEE HOST. IEEE, Jun. 2008, pp. 67-70.
4 [5] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key generation," in 2007 DAC, p. 9.




But | always buy trusted new FPGA designs...

= Many critical systems are still in limited production.
> FPGA code can’t be easily ported to a new platform without a recompilation.

» This may trigger a new round of verification for the product to remain
certified.

> The economic case doesn’t exist to recertify this product on a new FPGA.

= Counterfeit products are estimated to affect the global economy by
over 1 trillion dollars.

= Counterfeit electronics are estimated to have a $169 billion impact.

= Counterfeit programmable logic is estimated to have a $2 billion
impact. [6]

5[61 IHS., “Top 5 Most Counterfeited Parts Represent a $169 Billion Potential Challenge for Global Semiconductor Market." 2012.w



Why should | care about counterfeit parts?

* FPGA based systems have a long lifetime.

= Current methods of Supply Chain Management rely on initial
verification procedures for parts.
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[7]

[7]1 S. Drimer, “Volatile FPGA design security a survey.”
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s [81 M. Tehranipoor, U. Guin. and D. Forte. “Counterfeit Intearated Circuits”. Sprinaer International Publishing. 2015.
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Where can | be attacked?

= Multiple attack vectors that cannot always be protected by
policy and procedures.
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[9]
[9] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges Ahead,'
7Journal of Electronic Testing. vol. 30. no. 1. pp. 9-23. Feb. 2014.




Hasn’t this already been done before?

= Comparison of existing techniques by extending existing research.

Cost
IDs Reliability Uniqueness | Unclonable | Manufacturability | effectiveness | Ease-of-Use
QR codes
(Physical Artifact) Not verified Medium Medium Not verified Not verified High
DNA markings Low Low Low Low Low Medium
Nanorods
(Physical Artifact) Not verified High High Not verified Not verified Medium
TPhysically
Uncloneable Functions || Not verified High High Not verified Not verified Medium
Scanning Klectron
Microscope High N/A N/A N/A Low High
Chemical Analysis Medium Low Low Low High Low Low
Foundry
Identification[36] Medium Low Low Low N/A Medium | Medium High
Recycled FPGA
Detection[35] Medium Low | Medium Low | Medium N/A Medium Medium High

(4




How does this work?

= Multiple large ring oscillators
are placed across the FPGA.

= They are measured against an
external clock source.
> This is in contrast to existing
PUF implementations where a
scalar value is generated for
each measurement. Not a
binary result.

= Goal is to detect inter lot

variation and die aging
variation.




How does this work?

* The 8 ring oscillators(ROs)
were broken into the
following lengths:

> 4x256, 2x512, 2x1024.

= Two of the 256 ROs were
constrained to the edges
of the FPGA.

= Ring oscillators were
constrained to 15-100% of
the FPGA.
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What can we do with this information?

= Method for
discriminating between
FPGA lots.

= Used in determining lot
integrity.
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What can we do with this information?

= Method for
discriminating between
baked FPGA chips.

= Used for detecting
tampered chips with
adequate baselines.
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What are we looking for?

= All chips have a initial
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Results—Supply Chain Integrity Measurer for FPGAs

= Slight differences can be identified between the lots for two
different ring oscillators.
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Results—Supply Chain Integrity Measurer for FPGAs

* This data can then be utilized in a Support Vector Machine (SVM)
to perform classification of results.
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Results—Supply Chain Integrity Measurer for FPGAs

* This can be further expanded to utilize all 8 dimensions of

measurements.

= Single digit error rates.
Training

| || Linear | RBF .000005 | RBF .000001 | RBF .0000005 | RBF .0000001
3] 62/2760 0/2760 0/2760 0/2760 0/2760
5| 76/4184 0/4184 0/4184 0/4184 0/4184
7] 128/6120 | 0/6120 0/6120 0/6120 0/6120

Novel Data

| || Linear [ RBF .000005 | RBF .000001 | RBF .0000005 | RBF .0000001
3] 128/6120 |  227/6120 100/6120 89/6120 84/6120
5| 7074184 | 115/4184 54/4184 A7/4184 43/4184
7| 45/2760 |  52/2760 17/2760 18/2760 11/2760

Note: x-axis is Gamma Values for RBF, y-axis is percentage of training data.




Results—Supply Chain Integrity Measurer for FPGAs

= This graph shows the
gradual decrease in
frequency of a part.

= Each part is exposed to
multiple baking processes.

> This simulates the removal
from a PCB board in
addition to the burn-in
process.

Note: y-axis is frequency in Hertz, y-axis is number of elements in histogram bin.
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Results—Supply Chain Integrity Measurer for FPGAs

= Error rates are higher than the lot identifiers, but are still around

10% for RBF kernels.

Training Data

Linear | RBF .00005 | RBF .00001 | RBF .000005
3] '390/1080 1/1080 1/1080 1/1080
5 N/A 0/1800 3/1800 6/1800
7 N/A 0/2520 2/2520 8/2520
9 N/A 0/3240 3/3240 10/3240

Novel Data

Linear | RBF .00005 | RBF .00001 | RBF .000005
3 1098/2520 [ 454/2520 287/2520 235/2520
5 N/A 242 /1800 165/1800 113/1800
7 N/A 122/1080 92/1080 77/1080
9 N/A 51/360 39/360 32/360

Note: x-axis is Gamma Values for RBF, y-axis is percentage of training data.




Analysis—Supply Chain Integrity Measurer for FPGAs

= How does this fit into existing research?

Cost
IDs Reliability Uniqueness | Unclonable | Manufacturability | effectiveness | Ease-of-Use
QR codes
(Physical Artifact) Not verified Medium Medium Not verified Not verified High
DNA markings Low Low Low Low Low Medium
Nanorods
(Physical Artifact) Not verified High High Not verified Not verified Medium
Physically
Uncloneable Functions || Not verified High High Not verified Not verified Medium
Scanning Electron
Microscope High N/A N/A N/A Low High
Chemical Analysis Medium Low Low Low High Low Low
Foundry
Identification[36] Medium Low Low Low N/A Medium | Medium High
Recycled FPGA
Detection[35] Medium Low | Medium Low | Medium N/A Medium | Medium High
Modified RO:
Lot-ID Medium Low | Medium Low | Medium N/A Medium Medium High
Modified RO:
Life cycle Medium Low | Medium Low | Medium N/A Medium Medium High




= How does this fit into existing techniques?

Analysis—Supply Chain Integrity Measurer for FPGAs

Destruct- | Implementation | Detection | Implementation Identification
Avoidance Technique Reliability iveness Difficulty Difficulty Cost Mechanism
Physically Individual
Unclonable Functions Medium None Medium Low High die
Physically Individual
Identifiable Artifact Low None Low Low Low die
Scanning Electron Difference between
Microscope High Yes None High None two dies
Chemical Difference between
Analysis Medium Low Yes Medium High Medium two dies
Foundry Manufacturing
Identification[36] Medium Low None Low Medium Medium foundry
Recycled FPGA Golden model
Detection|[35] Medium Low None Low Medium Medium comparison
Modified RO: Manufacturm
Lot-ID Medium Low None Low Medium Medium lot
Modified RO: Individual
Life cycle Medium Low None Low Medium Medium die re-flow

20




Future Work—-Supply Chain Integrity Measurer for FPGAs

= Additional vectors of data need to be integrated into the SVM for
better analysis.

> More manufacturing lots.
> Advise from vendors on manufacturing processes.

= Additional test cases should be evaluated to further fine-tune
the ring oscillators.

> Develop process to further identify
attribute points.
> Further investigate placement properties.

21 w



Conclusions—-Supply Chain Integrity Measurer for FPGAs

= New technique to actively measure the “health status” of
FPGAs.

> Lot/foundry discrimination.

> FPGA aging/baking discrimination.

= This status can be used in conjunction with other techniques to
improve active measurements of FPGAs to assist with supply
chain decisions.

> Assist in obtaining/validating older FPGAs.

22 w
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