A Highly-dense Mixed Grained Reconfigurable Architecture with Overlay Crossbar Interconnect Using Via-switch

Junshi Hotate^{1,6} Takashi Kishimoto^{1,6} Toshiki Higashi^{1,6} Hiroyuki Ochi^{1,6} Ryutaro Doi^{2,6} Munehiro Tada^{3,6} Tadahiko Sugibayashi^{3,6} Kazutoshi Wakabayashi^{3,6} Hidetoshi Onodera^{4,6} Yukio Mitsuyama^{5,6} Masanori Hashimoto^{2,6} ¹Ritsumeikan University ²Osaka University ³NEC Corporation ⁴Kyoto University ⁵Kochi University of Technology ⁶JST, CREST

Via-Switch

Via-switch is a non-volatile and re-programmable switch. T1 and T2 are connected and disconnected.

non-linear device for selecting an atom switch **Complementary atom switch**

Architecture Overview The proposed architecture is a homogeneous array of unit tiles

The unit tile consists of four crossbar blocks (XBs), eight fine-grained logic blocks (LBs) and a coarse-grained arithmetic block (AB) or memory block (MB).

Architecture Components Logic Block — LB from XB (to upper LB) Cout 01AA BCDE + + + + MUX16 Via-switch DO BEOL layers array MUX16 FEOL layers $\downarrow \downarrow \downarrow \downarrow$ Carry Ċin (from lower LB) Arithmetic Block ~ AB from XB 16 33 1.6 32

Mapping Experiments on Flow> < Target Design>

We implemented a design "**CConv**", a front-end circuit for image sensor including RGB-YUV conversion

Required logic resources for "CConv"

et Architecture	AB	LB	Unit tile array size
FGRA		512	8×8 (512LB)
RA (proposed)	14	76	4×4 (16AB+128LB)

<u>)Array Area</u>

Comparison of the array area needed for implementing "CConv"

Architecture	Track	BEOL area	FEOL area
FGRA unidir.	68	441kF ²	87kF ²
MGRA bidir.	44	308kF ²	426kF ²

(2) Delay and Energy

Circuit simulation result at 0.5V operation using a circuit model of 91×44 crossbar with the equivalent circuit model of the via-switch

Kesults

Tile Array Array size area area 8×8 $5508 \,\mu \,\mathrm{m}^2$ $352512 \mu m^2$ -76% $85108 \mu m^2$ $5319 \mu m^2$ 4×4

This improvement can contribute to filling the gap between FPGA and ASIC.

Thank you! Please visit my poster.