

Stress-Aware Routing to Mitigate Aging Effects in SRAM-based FPGAs

26th International Conference on Field- **Programmable Logic and Applications Lausanne, Switzerland, Aug. 29th – Sep. 2nd, 2016**

Behnam Khaleghi¹, Behzad Omidi¹, Hussam Amrouch², Joerg Henkel² and Hossein Asadi¹

¹ Sharif University of Technology, Iran

² Karlsruhe Institute of Technology, Germany

Basic Concepts: Aging Phenomenon

- Aging |V_g↓V_g_s ⊻dq
 Bias Temperature Instability (BTI)
 - Negative BTI → pMOS type
 - Positive BTI _____ nMOS type

- Negative HCID → pMOS type
- Positive HCID _____ nMOS type
- Other types:
 - Time Dependent Dielectric Breakdown
- 3/23 Electro migration

Η

(Si)

Source(p)

(Si)

(Si)

Drain(p)

Basic Concepts: BTI

Bias Temperature Instability

- Includes two phases:
 - + Stress time
 - Applied voltage to Gate of MOS
 - $|V_{gs}| = V_{dd} \rightarrow$ Threshold voltage \uparrow
 - Recovery time
 - Remove voltage to Gate of MOS
 - $|V_{gs}| = 0 \rightarrow$ Threshold voltage \downarrow
 - Ideal Duty Cycle (DC) = 0.5
- > Attention:

 $|\Delta V_{th}|_{Recovery-Time} < |\Delta V_{th}|_{Stress-Time}$

S. Kiamehr, A. Amouri, and M. B. Tahoori, Investigation of nbti and pbti induced aging in different lut implementations, In Intl. Conference on Field – Programmable Technology (FPT), 2011.

Basic Concepts: BTI Impacts

Negative Effects of BTI

Motivation: Routing Vulnerability

• $P_{stress}(Routing) \approx P_{0\to 0} + P_{1\to 1} = 0.92 \times 0.92 + 0.08 \times 0.08 = 0.85$

• $P_{stress}(LUT) \approx P_{0 \to 0} + P_{1 \to 1} = 0.41 \times 0.41 + 0.59 \times 0.59 = 0.52$

Motivation: Routing Vulnerability

- Routing SRAMs are within Circuit Critical Path
 - Not for LUTs

Proposed Method: Duty Cycle

- Optimal Duty Cycle
 - SRAM_{DC} = 0.5
 - So, associated SB transistor

Q = 1

Proposed Method: Reconfigurations

Configuration Cells in Consecutive Reconfigurations

Proposed Method: Base Architecture

FPGA Architecture and Structures in Proposed Method

Proposed Method

Scheme 1

- Routing by Assigning Higher Cost to Previous Used Cells
- Inverting All Unused Cells

Scheme 2

- Routing by Avoiding Using Previous Active (0 or 1) Cells
- Inverting All Unused Cells

Proposed Method

- Assigning Initial Cost for (prev.) Active SRAMs
- Overlaping_{SRAM} > Threshold \rightarrow Use Scheme 1
- Overlaping_{SRAM} < Threshold \rightarrow Use Scheme 2

Proposed Method: Threshold Value

Experimental Setup

Architecture	Island Style
SB Type	Uni and Bi Directional
Switch Matrix Topology	Subset
SB Structure	Buffer/ Multiplexer
Wire Segment Length	L=1

Experimental Setup (cont.)

- Assumption
 - Circuits reconfigured in identical time intervals
- Same Circuit is Reconfigured
 - Using different placement seeds
 - FPGA array size and channel width is maintained
 - Same circuit with different placement and routing
 - Analogous to using different circuits
 - VPR tool modified to generate bitstream after routing each circuit

Results

Stress Time Reduction (Duty Cycle)

>Hot Spot Elimination (Required Reconfigurations)

Results (cont.)

>Aging Induced Delay (Average)

Results (cont.)

>Performance Overhead

Future Work

- Generalization
 - Commercial FPGA Parameters
 - SB multiplexer
 - Size, pass gate vs. transmission, two-level versus tree-based
 - Wire length
 - Switch matrix topology
- Impact of Temperature Distribution, Process Variation, etc.
- Impact on Soft Error Rate

Thanks for Your Patience!