Trojans Modifying Soft-Processor Instruction Sequences
Embedded in FPGA Bitstreams

ismail San, Nicole Fern, Cetin Kaya Kog¢ and Kwang-Ting (Tim) Cheng

University of California Santa Barbara
Anadolu University

FPL 2016 — August 31, 2016



FPGA Bitstream Security

@ Soft-core processors implemented using FPGAs are used in many critical
embedded systems

o Ubiquitous computing, e.g. loT, Avionics, Intellectual Property

@ Soft-core processor instructions stored in block memories embedded in
bitstream

o Program codes are usually infinite loops: they will continue to execute until
the processor is turned off

o Usually these instructions are difficult to extract from the bitstream
because memory contents are encoded

o If attacker modifies an FPGA bitstream without disrupting normal design
operation, will the modification be detected?
o Bitstream modification occurs after place and route, so only CRC checksums
have the ability to detect modifications and these can be easily disabled®:?2

IR. S. Chakraborty et al. “Hardware Trojan Insertion by Direct Modification of FPGA
Configuration Bitstream”. In: |[EEE Design Test 2 (2013).

2Tim Giineysu, lgor Markov, and André Weimerskirch. “Securely Sealing Multi-FPGA
Systems”. In: Proceedings of the 8th Int. Conf. on Reconfigurable Computing: Architectures,
Tools and Applications. 2012.



Attack Scenario

o Threat Model
o Program code performing critical function located in FPGA block RAM
o Attacker can obtain the bitstream then re-introduce a modified bitsream to
the FPGA but has no access to RTL code or original program code
@ Our Contributions
@ Algorithm to decode instructions residing in the FPGA bitstream allowing
attacker to reverse engineer the program
@ Methodology to identify code portions that are involved with some
important process, say encryption

© Methodology to manipulate the code by injecting a few extra instructions
leak information without changing the functionality of the original code



Case Study: Trojan Insertion in AES Instruction Sequence

554
558
55¢c
560
564
568
56¢
570

518:
5lc:
520:
524:
528:
52c:
530:
534:
538

53c:
540:
544

548

54c:
550:

3c020000
8c471308
00042100
3c020000
24850004
24421258
00452821
2480010
24 a3fffc
00e01021
90640000
90460000
24630001
00862026
0c00012d
20440000
14a3fffa
24420001
2470004
14e8fff5
24250004
0300008
00000000

lui
Iw
sl
lui
addiu
addiu
addu
addiu
addiu
move
Ibu
Ibu
addiu
xor
jal
sb
bne
addiu
addiu
bne
addiu
jr
nop

Vo,
a3,
a0,
VO,
al,
V0,
al
t0
vl

a0,
a2,
vl,
a0,

4b4

a0,
al,
Vo,
a3,
a3,
al,

0x0
4872(v0)
a0,0x4
0x0

a0 ,4
v0,4696

,v0,al
,a3,16
,al,—4
,a3

0(vl)
0(v0)
vl, 1

a0,a2

0(v0)

v1,540 #AddRoundKey+0x28
vo,1

a3 .4

0,538 #AddRoundKey+0x20
al,4

#UARTWriteByte

Listing 1: AddRoundKey Code Segment

3https://github.com/kokke/tiny-AES128-C

Code segment from MIPS
instruction sequence

Corresponds to the
AddRoundKey step in AES

Compiled with MIPS
cross-compiler toolchain from
the C code available online 3

The red instruction is the
injected jump-and-link
instruction to the UART
channel write subroutine



Properties of the Trojan

@ Novelty:
o Trojan CPU instructions are injected by manipulating the block memory
contents at the bitstream level
@ Strength:

o Powerful Trojans without extra logic
o Not possible to trace the trojan insertion during logic synthesis and
place-and-route processes

o Caveat:

o Unencrypted bitstream is needed
o However, there are practical side-channel attacks on bitstream encryption
mechanisms



Concluding Remarks

@ Motivation

o Cryptographic architectures or CPUs have many fixed values in their design
specifications embedded in bitstream

o Key Contributions

@ General model for creating a covert Program code at the Bitstream level

@ Information transmitted/leaked by injecting existing instructions only to
yield an information leakage without changing the functionality of the
original program code

© We avoid most of the existing verification mechanisms since it is introduced
after Place & Route



