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FPGA Bitstream Security

@ Soft-core processors implemented using FPGAs are used in many critical
embedded systems

o Ubiquitous computing, e.g. loT, Avionics, Intellectual Property

@ Soft-core processor instructions stored in block memories embedded in
bitstream

o Program codes are usually infinite loops: they will continue to execute until
the processor is turned off

o Usually these instructions are difficult to extract from the bitstream
because memory contents are encoded

o If attacker modifies an FPGA bitstream without disrupting normal design
operation, will the modification be detected?
o Bitstream modification occurs after place and route, so only CRC checksums
have the ability to detect modifications and these can be easily disabled®:?2

IR. S. Chakraborty et al. “Hardware Trojan Insertion by Direct Modification of FPGA
Configuration Bitstream”. In: |[EEE Design Test 2 (2013).

2Tim Giineysu, lgor Markov, and André Weimerskirch. “Securely Sealing Multi-FPGA
Systems”. In: Proceedings of the 8th Int. Conf. on Reconfigurable Computing: Architectures,
Tools and Applications. 2012.



Attack Scenario

o Threat Model
o Program code performing critical function located in FPGA block RAM
o Attacker can obtain the bitstream then re-introduce a modified bitsream to
the FPGA but has no access to RTL code or original program code
@ Our Contributions
@ Algorithm to decode instructions residing in the FPGA bitstream allowing
attacker to reverse engineer the program
@ Methodology to identify code portions that are involved with some
important process, say encryption

© Methodology to manipulate the code by injecting a few extra instructions
leak information without changing the functionality of the original code



Case Study: Trojan Insertion in AES Instruction Sequence
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Listing 1: AddRoundKey Code Segment

3https://github.com/kokke/tiny-AES128-C

Code segment from MIPS
instruction sequence

Corresponds to the
AddRoundKey step in AES

Compiled with MIPS
cross-compiler toolchain from
the C code available online 3

The red instruction is the
injected jump-and-link
instruction to the UART
channel write subroutine



Properties of the Trojan

@ Novelty:
o Trojan CPU instructions are injected by manipulating the block memory
contents at the bitstream level
@ Strength:

o Powerful Trojans without extra logic
o Not possible to trace the trojan insertion during logic synthesis and
place-and-route processes

o Caveat:

o Unencrypted bitstream is needed
o However, there are practical side-channel attacks on bitstream encryption
mechanisms



Concluding Remarks

@ Motivation

o Cryptographic architectures or CPUs have many fixed values in their design
specifications embedded in bitstream

o Key Contributions

@ General model for creating a covert Program code at the Bitstream level

@ Information transmitted/leaked by injecting existing instructions only to
yield an information leakage without changing the functionality of the
original program code

© We avoid most of the existing verification mechanisms since it is introduced
after Place & Route



