
Trojans Modifying Soft-Processor Instruction Sequences
Embedded in FPGA Bitstreams

İsmail San, Nicole Fern, Çetin Kaya Koç and Kwang-Ting (Tim) Cheng

University of California Santa Barbara
Anadolu University

FPL 2016 — August 31, 2016

FPGA Bitstream Security

Soft-core processors implemented using FPGAs are used in many critical
embedded systems

Ubiquitous computing, e.g. IoT, Avionics, Intellectual Property

Soft-core processor instructions stored in block memories embedded in
bitstream

Program codes are usually infinite loops: they will continue to execute until
the processor is turned off
Usually these instructions are difficult to extract from the bitstream
because memory contents are encoded

If attacker modifies an FPGA bitstream without disrupting normal design
operation, will the modification be detected?

Bitstream modification occurs after place and route, so only CRC checksums
have the ability to detect modifications and these can be easily disabled1,2

1R. S. Chakraborty et al. “Hardware Trojan Insertion by Direct Modification of FPGA
Configuration Bitstream”. In: IEEE Design Test 2 (2013).

2Tim Güneysu, Igor Markov, and André Weimerskirch. “Securely Sealing Multi-FPGA
Systems”. In: Proceedings of the 8th Int. Conf. on Reconfigurable Computing: Architectures,
Tools and Applications. 2012.

Attack Scenario

Threat Model
Program code performing critical function located in FPGA block RAM

Attacker can obtain the bitstream then re-introduce a modified bitsream to
the FPGA but has no access to RTL code or original program code

Our Contributions
1 Algorithm to decode instructions residing in the FPGA bitstream allowing

attacker to reverse engineer the program

2 Methodology to identify code portions that are involved with some
important process, say encryption

3 Methodology to manipulate the code by injecting a few extra instructions
leak information without changing the functionality of the original code

Case Study: Trojan Insertion in AES Instruction Sequence

5 1 8 : 3 c020000 l u i v0 , 0 x0
51 c : 8 c471308 lw a3 , 4 8 7 2 (v0)
5 2 0 : 00042100 s l l a0 , a0 , 0 x4
5 2 4 : 3 c020000 l u i v0 , 0 x0
5 2 8 : 24850004 a d d i u a1 , a0 , 4
52 c : 24421258 a d d i u v0 , v0 , 4 6 9 6
5 3 0 : 00452821 addu a1 , v0 , a1
5 3 4 : 24 e80010 a d d i u t0 , a3 , 1 6
5 3 8 : 24 a 3 f f f c a d d i u v1 , a1,−4
53 c : 00 e01021 move v0 , a3
5 4 0 : 90640000 l b u a0 , 0 (v1)
5 4 4 : 90460000 l b u a2 , 0 (v0)
5 4 8 : 24630001 a d d i u v1 , v1 , 1
54 c : 00862026 x o r a0 , a0 , a2
5 5 0 : 0 c00012d j a l 4b4 #UARTWriteByte
5 5 4 : a0440000 sb a0 , 0 (v0)
5 5 8 : 14 a 3 f f f a bne a1 , v1 , 5 4 0 #AddRoundKey+0x28
55 c : 24420001 a d d i u v0 , v0 , 1
5 6 0 : 24 e70004 a d d i u a3 , a3 , 4
5 6 4 : 14 e 8 f f f 5 bne a3 , t0 , 5 3 8 #AddRoundKey+0x20
5 6 8 : 24 a50004 a d d i u a1 , a1 , 4
56 c : 03 e00008 j r r a
5 7 0 : 00000000 nop

Listing 1: AddRoundKey Code Segment

Code segment from MIPS
instruction sequence

Corresponds to the
AddRoundKey step in AES

Compiled with MIPS
cross-compiler toolchain from
the C code available online 3

The red instruction is the
injected jump-and-link
instruction to the UART
channel write subroutine

3https://github.com/kokke/tiny-AES128-C

Properties of the Trojan

Novelty:
Trojan CPU instructions are injected by manipulating the block memory
contents at the bitstream level

Strength:
Powerful Trojans without extra logic
Not possible to trace the trojan insertion during logic synthesis and
place-and-route processes

Caveat:
Unencrypted bitstream is needed
However, there are practical side-channel attacks on bitstream encryption
mechanisms

Concluding Remarks

Motivation
Cryptographic architectures or CPUs have many fixed values in their design
specifications embedded in bitstream

Key Contributions
1 General model for creating a covert Program code at the Bitstream level
2 Information transmitted/leaked by injecting existing instructions only to

yield an information leakage without changing the functionality of the
original program code

3 We avoid most of the existing verification mechanisms since it is introduced
after Place & Route

