Energy-Efficient Stochastic Matrix Function Estimator for Graph Analytics on FPGA

Heiner Giefers, Peter Staar, Raphael Polig

IBM Research – Zurich

26th International Conference on Field-Programmable Logic and Applications 29th August – 2nd September 2016 SwissTech Convention Centre Lausanne, Switzerland

Motivation

- Knowledge graphs appear in many areas of basic research
- These knowledge graphs can become very big (e.g. cover around ~80M papers and 10M patents)
- We want to extract hidden correlations in these graphs

Graph Analytics Use Cases

To extract hidden correlations in these graphs, we need to apply advanced graph-algorithms. Examples are:

1. <u>Subgraph-centralities</u>: Find the most relevant nodes by ranking them according to the number of closed wa

2. <u>Spectral-methods</u>: Compare large graphs by looking at their spectrum

Graph Analytics Use Cases

To extract hidden correlations in these graphs, we need to apply advanced graph-algorithms. Examples are:

1. <u>Subgraph-ce</u> relevant noc according to

Requires us to diagonalize the adjacency matrix of the graph. This has a complexity of O(N³)

A graph of 1M nodes requires exascale computing

IBM Research

2. <u>Spectral-meth</u> graphs by looking

Node Centrality for Ranking Nodes in a Graph

- Subgraph centrality
 - Total number of closed walks in the network
 - The number of walks of length *l* in *A* from *u* to *v* is $(A^l)_{uv}$
 - Subgraph centrality considers all possible walks, shorter walks have higher importance:
 - $1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!} + \frac{A^5}{5!} + \cdots$
 - Taylor series for the exponential function $e^A \rightarrow$ weighted sum of all paths in A
 - Consider only closed walks $\rightarrow c_i = (Diag[e^A])_i$
- Explicit computation of matrix exponentials is difficult
 - Though A is sparse, A^l becomes dense \rightarrow huge memory footprint
 - Exascale compute requirements for exact solutions

5

Observations

- Observation 1: We only need an **approximate solution**
 - We do not need highly accurate results to obtain a good ranking!
 - We do not need to know exact value of the eigenvalues in order to have a histogram of the spectrum of A!
- Observation 2: In both operations, we need to compute a subset of elements of a matrix-functional
 - In the case of the subgraph-centrality, we need the diagonal of e^A
 - In the case of the spectrogram, we need to compute the trace of multiple stepfunctions

6

Stochastic Matrix-Function Estimator (SME)

Framework to approximate (a subset of elements of) the matrix *f*(A), where *f* is an arbitrary function and A is the adjacency matrix of the graph [1].

R = zero();							
for I = 1 to Ns/Nb do		Use Ns test vectors in blocks of size Nb					
forall e in V do							
e = (rand()/RAND_MAX	<<0.5) ? -1.0 : 1.0;	Initialize the Nb columns of V with random -1/1 (2%)					
done							
M0 = V		Compute W = $f(A)$ V with Chebyshev polynomials of					
W = c[0] * V	// AXPY	the first kind. (97% of run time)					
M1 = A * V	// SPMM						
W = c[1] * M1 + W	// AXPY						
for m = 2 to Nc do							
M0 = 2 * A * M1 - M0	// SPMM						
W = c[m] * M0 + W	// AXPY						
pointer_swap(M0,M1)							
done							
R += W * V ^T	// SGEMM / DOT	Accumulate partial results over test vectors (1%)					
done							
E[f(A)] = R/Ns		Normalize to get final result					

[1] Peter W. J. Staar, Panagiotis Kl. Barkoutsos, Roxana Istrate, A. Cristiano I. Malossi, Ivano Tavernelli, Nikolaj Moll, Heiner Giefers, Christoph Hagleitner, Costas Bekas, and Alessandro Curioni. "Stochastic Matrix-Function Estimators: Scalable Big-Data Kernels with High Performance." IPDPS 2016. (received Best Paper Award)

8/31/2016

IBM **Research**

Accelerated Stochastic Matrix-Function Estimator

r = zero()	
r = 2 cio(),	
forall o in V do	
e = (rand()/RAND MAX<0)	5) 2 -1 0 · 1 0·
done	o): 1.0.1.0,
M0 = V	
W = c[0] * V	// AXPY
M1 = A * V	// SPMM
W = c[1] * M1 + W	// AXPY
for m = 2 to Nc do	
M0 = 2 * A * M1 - M0	// SPMM
W = c[m] * M0 + W	// AXPY
pointer_swap(M0,M1)	
done	
R += W * V [⊤]	// SGEMM / DOT
done	
E[f(A)] = R/Ns	

Accelerated Stochastic Matrix-Function Estimator

SME Architecture – Random Number Generator

- xorshift64 based random number generator to generate Rademacher distribution
 - High quality, passes many passes many statistical tests [2]
 - Well suited for FPGA implementation
 - Initialize V, MO, and W on-the-fly

[2] George Marsaglia. "Xorshift RNGs," Journal of Statistical Software, 2003.

```
ulong2 xorshift64s (ulong x){
         ulong2 res;
          x ^= x >> 12;
          x ^= x << 25;
          x ^= x >> 27;
         res.x = x;
         res.y = x * 2685821657736338717ull;
         return res;
 kernel
void rng(float *M0,*W,*V,cm, uint num, ulong seed){
  ulong2 rngs = {rand, 0xdecafbad};
  ulong rs; float rn;
  for(unsigned k = 0; k < num; k+=N UNROLL){</pre>
    rngs = xorshift64s(rngs.x);
    rs = rngs.y;
    #pragma unroll N UNROLL
    for(unsigned b = 0; b < N UNROLL; b++){</pre>
      rn = ((rs >> b) \& 0x1) ? -1.0 : 1.0;
      V[k+b] = rn;
      MO[k+b] = rn;
      W[k+b]
              = cm*rn;
```

SME Architecture: CSR Sparse Matrix Multiplication

6 8 1	6	7	2	2	5	8	5	7	2	4	6	2	6	8	1	5	7	7	8
026	1	3	2	3	7	0	4	5	1	6	7	0	1	2	1	2	4	2	5
035	8	11	14	17	20	22													

sparse matrix in CSR format

sparse matrix-matrix multiplication

Resource Utilization for Kernels on Stratix-V 5SGXA7

SME on Heterogeneous System

POWER8 heterogeneous node

- 1. Dual-socket 6-core CPU, 96 threads
 - IBM xIC compiler using OpenMP and Atlas BLAS
- 2. NVIDIA Tesla K40 GPU
 - CUDA 7.5 with cuBLAS
 - Self-developed SpMM outperforms cusparseScsrmm()
- 3. Nallatech PCIe-385 card w/ Altera Stratix-V FPGA
 - Altera OpenCL HLS

SME – Approximation Quality on the 3 Platforms

- Estimation quality depends on several factors
 - Number of test vectors
 - Number of terms in Chebyshev expansion
 - Quality of the random number generator used to initialize the test vectors
 - Precision of floating point operations

Power Profiling

- POWER8 On-Chip Controller (OCC)
 - Enables fast, scalable monitoring (ns timescale)
 - OCC is implemented in a POWERPC 405
 - Uses continuous running, real-time OS
 - Monitors workload activity, chip temperature and current
- Trace power consumption using Amester
 - Tool for out-of-band monitoring of POWER8 servers
 - Open sourced on github: github.com/open-power/amester
 - Current sensors for various domains (socket, memory buffer/DIMM, GPU, PCIe, fan, ...)
 - Compute power consumption: $P^{comp} = P^{total} P^{idle}$

Amest	er					_ 🗆 ×			
<u>File T</u> ools	<u>H</u> elp								
Select col	umns Pa	use							
	name	mtm	addr		_	link 🛆			
Functions	myfsp	9117-	MMB s56a.a	ustin.ibm.	. cc	om up			
1					_				
Clear min/	nax Sel	ect sensors	Select columns		^	TPS32MS graph			
	sensor	name]	value		5000 3	Τī		
Graph	FREQIM	ISP0		3892 MHz	1	4000	1		
Graph	FREQ1M	ISP1		3892 MHz					
Graph	IPS32M	IS	81	0.20 MIPS		1000	Λ		
Graph	PWR1MS			751.80 W					
Graph	PWR1MS	MEM0		60.000 W		32000 34000 36000			
Graph	PWR1MS	MEM1		51.500 W		Time			
Graph	PWR1MSP0			171.10 W		× myfsp PWR1MSP1 graph			
Graph	PWR1MSP1			158.80 W		PWR1MSP1	-		
Graph	TEMP32	MSP0		36 C			-		
	-				11		v		

46.840 % 1281.3 mV

1306.3 mV 1250.0 mV 1300.0 mV

LT1MSP0V0

VOLT1MSP1V

32000

34000

Time

36000

PWR1MSP

Application-Level Power Traces

IBM Research

SME – Energy-Efficiency Analysis

Platform	Run time [s]	Dynamic Power [W]	Energy to Solution [kJ]	
CPU	172.55	143.92	24.83	Fa
CPU	232.31	57.01	13.24	Мо
GPU	19.52	155.42	3.03	
FPGA	114.00	9.13	1.04	

Fastest CPU version (6 threads) Most efficient CPU version (1 thread)

FPGA is ~6x slower but ~3x more energy-efficient compared to the GPU

CPU	IBM POWER8 2-socket 12-core
FPGA	Nallatech PCIe-385 with Altera Stratix-V
GPU	NVIDIA K40

Conclusion

- Accelerators outperform the CPU. GPUs are dominant in terms of absolute performance
 - GPU is 12x, FPGA 2x faster than a CPU core
- The compute energy for the FPGA outstanding
 - 3x better compared tor GPU, 13x better compared to the CPU
- What about the idle power? (~550W for the system we used)
 - We need energy-proportional computing
 - Cloud: Accelerators free CPU cycles
 - Cloud-FPGA: Standalone, network-attached FPGA to remove "host overhead"
- OpenCL increased productivity
 - Short design time, (almost) no verification
 - Optimization is cumbersome

BM Resear

Questions?

Heiner Giefers IBM Research – Zurich hgi@zurich.ibm.com

26th International Conference on Field-Programmable Logic and Applications 29th August – 2nd September 2016 SwissTech Convention Centre Lausanne, Switzerland

