Energy-Efficient Stochastic Matrix Function
Estimator for Graph Analytics on FPGA

Heiner Giefers, Peter Staar, Raphael Polig
IBM Research — Zurich

26th International Conference on Field-
F P L Programmable Logic and Applications
29th August — 2nd September 2016
l E SwissTech Convention Centre

Lausanne, Switzerland IBM Research

M Otivati O n Journals (9052)

Proteins (549832)

* Knowledge graphs appear in many

areas of basic research
Diseases (9100)

Drugs (8148)
Symptoms (1433)
MeSH (35158)

* These knowledge graphs can
become very big (e.g. cover around
~80M papers and 10M patents)

Pubmed

* We want to extract hidden (644890)
correlations in these graphs

Authors
(1869746)

System-Biology Knowledge Graph

8/31/2016 2 IBM Research

Graph Analytics Use Cases

To extract hidden correlations in these graphs, we need to apply advanced

graph-algorithms. Examples are: . o e
Reey@)1983 Ku82 S0 L1 _:;\73

So Culbagae

>

1. Subgraph-centralities: Find the most
relevant nodes by ranking them
according to the number of closed wa

2. Spectral-methods: Compare large
graphs by looking at their spectrum

8/31/2016 - 3 IBM Research

Graph Analytics Use Cases

To extract hidden correlations in these graphs, we need to apply advanced
graph-algorithms. :

Requires us to diagonalize the
adjacency matrix of the graph.
This has a complexity of O(N3)

A graph of 1M nodes requires

exascale computing
2. Spectral-me

graphs by look

8/31/2016 N 4 IBM Research

Node Centrality for Ranking Nodes in a Graph

e Subgraph centrality
e Total number of closed walks in the network

* The number of walks of length lin A fromutovis (Al)uv

e Subgraph centrality considers all possible walks, shorter walks have higher
importance:

L+ A+2 o+ 8+ 4+ 2 5+ -
* Taylor series for the exponential function e = weighted sum of all paths in A4
e Consider only closed walks = ¢; = (Diag[e?]);

* Explicit computation of matrix exponentials is difficult

 Though A is sparse, A' becomes dense = huge memory footprint
* Exascale compute requirements for exact solutions

8/31/2016 5 IBM Research

Observations

* Observation 1: We only need an approximate solution
* We do not need highly accurate results to obtain a good ranking!

 We do not need to know exact value of the eigenvalues in order to have a
histogram of the spectrum of Al

e Observation 2: In both operations, we need to compute a subset of
elements of a matrix-functional
* In the case of the subgraph-centrality, we need the diagonal of e#

* In the case of the spectrogram, we need to compute the trace of multiple step-
functions

IBM Research

Stochastic Matrix-Function Estimator (SME)

Framework to approximate (a subset of elements of) the matrix f(A), where fis an arbitrary
function and A is the adjacency matrix of the graph [1].

r

R = zero();
for 1 =1 to Ns/Nb do Use Ns test vectors in blocks of size Nb
forall e in V do
e = (rand()/RAND_MAX<0.5) ? -1.0 : 1.0; Initialize the Nb columns of V with random -1/1 (2%)
done
MO =V Compute W = f(A) V with Chebyshev polynomials of
W =c[0] * V Il AXPY the first kind. (97% of run time)
M1=A*V Il SPMM
W =c[1]* M1 + W Il AXPY

for m =2 to Nc do
MO=2*A*M1-MO /| SPMM
W =c[m] * MO + W Il AXPY
pointer_swap(MO0O,M1)

done

R+=W*VT /| SGEMM / DOT Accumulate partial results over test vectors (1%)
done
E[f(A)] = R/Ns Normalize to get final result

.

[1] Peter W. J. Staar, Panagiotis Kl. Barkoutsos, Roxana Istrate, A. Cristiano |. Malossi, lvano Tavernelli,Nikolaj Moll, Heiner Giefers, Christoph Hagleitner, Costas Bekas, and
Alessandro Curioni. “Stochastic Matrix-Function Estimators: Scalable Big-Data Kernels with High Performance.” IPDPS 2016. (received Best Paper Award)

8/31/2016 7 IBM Research

Accelerated Stochastic Matrix-Function Estimator

CPU FPGA
R = zero();
for =1 to Ns/Nb do
foralleinV do
e = (rand()/RAND_MAX<0.5) ?-1.0: 1.0;
done
MO =V
W =c[0]*V Il AXPY
M1=A*V /Il SPMM
W=c[1]*M1 +W Il AXPY
form =2 to Nc do
MO=2*A*M1-MO /I SPMM
W =c[m] * MO + W Il AXPY
pointer_swap(MO0,M1)
done
R+=W*VT Il SGEMM / DOT
done
E[f(A)] = R/Ns

8/31/2016 8 IBM Research

Accelerated Stochastic Matrix-Function Estimator

R = zero();
for =1 to Ns/Nb do
foralleinV do
e = (rand()/RAND_MAX<0.5) ? -1.0: 1.0;
done
MO =V
W =c[0]*V Il AXPY
M1=A*V /Il SPMM
W=c[1]*M1 +W Il AXPY
form =2 to Nc do
MO=2*A*M1-MO /I SPMM
W =c[m] * MO + W Il AXPY
pointer_swap(MO0,M1)
done
R+=W*VT Il SGEMM / DOT
done
E[f(A)] = R/Ns
8/31/2016

CPU FPGA

i Map the entire outer

i loop onto the FPGA

I « (Almost) no host-
device communication

* 3 sequential stages

* No double buffering
needed

* 4 asynchronous
kernels in inner loop

9 IBM Research

SME Architecture — Random Number Generator

* xorshift64 based random number
generator to generate Rademacher
distribution

* High quality, passes many passes
many statistical tests [2]

* Well suited for FPGA implementation
* |nitialize V, MO, and W on-the-fly

‘l,seed \l, cm,

RNG
(incl. RHS init)

[2] George Marsaglia. “Xorshift RNGs,” Journal of Statistical Software, 2003.

8/31/2016

-

ulong2 xorshift64s (ulong x){
ulong2 res;
>> 12;
<< 25;
>> 27;
X5
res.y = x ¥ 2685821657736338717ull;
return res;

X
>
|

nm n X X X

}

__kernel
void rng(float *M@,*W,*V,cm, uint num, ulong seed){
ulong2 rngs = {rand, Oxdecafbad};
ulong rs; float rn;
for(unsigned k = 0; k < num; k+=N_UNROLL){
rngs = xorshift64s(rngs.x);
rs = rngs.y;
#pragma unroll N_UNROLL
for(unsigned b = ©; b < N_UNROLL; b++){

rn = ((rs >> b) & 0x1) ? -1.0 : 1.0;
V[k+b] = rn;

MO[k+b] = rn;

W[k+b] = cm*rn;

}

10 IBM Resear;.:h

SME Architecture: CSR Sparse Matrix Multiplication

—————————————
~~~~~

| |
s EEEEEISE T A S T FFE 2R 8
»  EEEEEGEEEE AR ] =}

. = e

sparse matrix in CSR format sparse matrix-matrix multiplication
erWS l,rows
A c e int
JA CSR c_A c S
_,A | Reader c JA > =, 1825\,%':/' - /:4 >
> i1 simp oa
c _rhs
RHS | > * Asynchronous kernels
> rrrr—r—7 .| MO AXPY MO e Synchronization via
Mo | Prefetcher [T T T T 7T
$ . o W W FIFO channels
— |||||I|I|I|H _—
Tnnz [ T T T T 1 float16 TFOWS Tcm

8/31/2016 11 IBM Research



Resource Utilization for Kernels on Stratix-V 5SGXA7

60

50

40

30

20

10

0

8/31/2016

____________________________________________________________________________

( Inner loop

._.I-J _I l I.|.I.n

matrlx _prefetch  rhs_prefetch SpMM AXPY

____________________________________________________________________________

W LEs W FFs = RAMs [ DSPs

12

accu_result

IBM Research



SME on Heterogeneous System

POWERS8 heterogeneous node

1. Dual-socket 6-core CPU, 96 threads
* |IBM xIC compiler using OpenMP and Atlas BLAS

2. NVIDIA Tesla K40 GPU
 CUDA 7.5 with cuBLAS
 Self-developed SpMM outperforms cusparseScsrmm()

3. Nallatech PCle-385 card w/ Altera Stratix-V FPGA
e Altera OpenCL HLS

8/31/2016 13 IBM Research



SME — Approximation Quality on the 3 Platforms

. . . Ny =1k Ny = 16k
* Estimation quality depends on —— —
e CPU
several factors . GPU X
* Number of test vectors | * FPGA
 Number of terms in Chebyshev
expansion

e Quality of the random number
generator used to initialize the
test vectors

* Precision of floating point
operations

exact centrality
exact centrality

estimated centrality estimated centrality

8/31/2016 14 IBM Research



Power Profiling

m
* POWERS8 On-Chip Controller (OCC) R ———
= Ir 56a.austin.ibm.com u

* Enables fast, scalable monitoring (ns timescale)

Claar minfmasx ‘ Select sensors | Salect columi

orname

na‘

* OCCisimplemented in a POWERPC 405 o Jrecees

Graph | FREQIMSP1
Graph | TPS32M8

* Uses continuous running, real-time OS =
. . . . EPWRlMSMEMl
* Monitors workload activity, chip temperature m=nt

Graph TEMP32MSPO

a n d C u r re nt Graph | TEMP32MSP1
_ Graph | TEMPAMBIENTIN
Graph  |UTTL32MS
Graph | VOLTIMSPOVO
ET‘VOLTIMSPOVI
Graph -\ VOLT1MSP1V0
Graph | VOLTIMSPLVL

c
value [A 7
3892 MHz
3892 MHz
810,20 MIPS
751.80 W
£0.000 W 32000 34000 36000
=
51.500 W "
e e
’ PHR1MSP1
158.80 W 200
] [ Pr1sPL
36 C 3
34 C 50
Z6 C 1
16.840 % | || =107
1281.3 mv ]
50
1306.3 mv
1250.0 mv
T 1t 1 1 1T 7T
1300.0 nv | | 32000 34000 36000
|/ Time

* Trace power consumption using Amester
 Tool for out-of-band monitoring of POWERS servers
* Open sourced on github: github.com/open-power/amester

e Current sensors for various domains (socket, memory buffer/DIMM, GPU, PCle, fan, ...)

« Compute power consumption: P€0™P = ptotal _ pidle

8/31/2016

15

IBM Research



Application-Level Power Traces

200

150

100

Dynamic Power [W]

Ln
=

8/31/2016

—— Total Power -—--

PCle Power

--—- Ext. 12V GPU Power
- sleep 60s w
Ll #-"'J \1"-. FM*']]I]
o 1 2 3 4 5 6 7 8
Time [min]
CPU (6 threads) FPGA GPU
<< > ——ly <>

530
g0} _
= =
E?s- EBUZ'
ug _ 5703
2 70 F e -
; M 5534@ 7] EDD
& B3 B =
" 550 E
L ot o —
a A —— PCle Power [s40> | 1503
33 ' —-- Total Power =
5.0 . — "-'.5'.0 55 70 75 B0 -0 Y
/6 Time [min] g
o
Device / 1100 ¢
reconfiguration % E
li E"
150 O
]
1
=== 10
0 2 4 6 8 10
Time [min]
CPU (1 thread)
< >
16 IBM Research



SME — Energy-Efficiency Analysis

143.92 24.83 Fastest CPU version (6 threads)
57.01 13.24 Most efficient CPU version (1 thread)
155.42 3.03
9.13 1.04

FPGA is ~6x slower but ~3x more energy-efficient
compared to the GPU

CPU IBM POWERS 2-socket 12-core
FPGA Nallatech PCle-385 with Altera Stratix-V
GPU NVIDIA K40

8/31/2016 17 IBM Research



Conclusion

* Accelerators outperform the CPU. GPUs are dominant in terms of absolute

performance
e GPU is 12x, FPGA 2x faster than a CPU core

* The compute energy for the FPGA outstanding
* 3x better compared tor GPU, 13x better compared to the CPU

* What about the idle power? (~¥550W for the system we used)

* We need energy-proportional computing
* Cloud: Accelerators free CPU cycles

* Cloud-FPGA: Standalone, network-attached FPGA to remove “host overhead”

* OpenCL increased productivity
* Short design time, (almost) no verification
* Optimization is cumbersome

Relative Performance

100;
80f
60r
40r
20f

vl

v2

v3

vd

vh

vb

v7

0

3M Research



Questions?

Heiner Giefers
IBM Research — Zurich
hgi@zurich.ibm.com

Programmable Logic and Applications
29th August — 2nd September 2016
l E SwissTech Convention Centre

Lausanne, Switzerland IBM Research

I 26th International Conference on Field-




