
Energy-Efficient Stochastic Matrix Function
Estimator for Graph Analytics on FPGA
Heiner Giefers, Peter Staar, Raphael Polig

IBM Research – Zurich

26th International Conference on Field-
Programmable Logic and Applications
29th August – 2nd September 2016
SwissTech Convention Centre
Lausanne, Switzerland

Motivation

• Knowledge graphs appear in many
areas of basic research

• These knowledge graphs can
become very big (e.g. cover around
~80M papers and 10M patents)

• We want to extract hidden
correlations in these graphs

8/31/2016 2

Journals (9052)

Authors
(1869746)

Pubmed
(644890)

Diseases (9100)
Drugs (8148)

Symptoms (1433)
MeSH (35158)

Proteins (549832)

System-Biology Knowledge Graph

1. Subgraph-centralities: Find the most
relevant nodes by ranking them
according to the number of closed walks

2. Spectral-methods: Compare large
graphs by looking at their spectrum

To extract hidden correlations in these graphs, we need to apply advanced
graph-algorithms. Examples are:

Graph Analytics Use Cases

8/31/2016 3

1. Subgraph-centralities: Find the most
relevant nodes by ranking them
according to the number of closed walks

2. Spectral-methods: compare large
graphs by looking at their spectrum

To extract hidden correlations in these graphs, we need to apply advanced
graph-algorithms. Examples are:

Graph Analytics Use Cases

8/31/2016 4

Requires us to diagonalize the
adjacency matrix of the graph.
This has a complexity of O(N3)

A graph of 1M nodes requires
exascale computing

Node Centrality for Ranking Nodes in a Graph

• Subgraph centrality
• Total number of closed walks in the network

• The number of walks of length 𝑙 in 𝐴 from 𝑢 to 𝑣 is 𝐴𝑙
𝑢𝑣

• Subgraph centrality considers all possible walks, shorter walks have higher
importance:

1 + 𝐴 + 𝐴2
2!+ 𝐴3

3!+ 𝐴4
4!+ 𝐴5

5! +⋯

• Taylor series for the exponential function 𝑒𝐴 weighted sum of all paths in 𝐴

• Consider only closed walks  𝑐𝑖 = 𝐷𝑖𝑎𝑔 𝑒𝐴 𝑖

• Explicit computation of matrix exponentials is difficult
• Though 𝐴 is sparse, 𝐴𝑙 becomes dense  huge memory footprint

• Exascale compute requirements for exact solutions

8/31/2016 5

Observations

• Observation 1: We only need an approximate solution
• We do not need highly accurate results to obtain a good ranking!

• We do not need to know exact value of the eigenvalues in order to have a
histogram of the spectrum of A!

• Observation 2: In both operations, we need to compute a subset of
elements of a matrix-functional
• In the case of the subgraph-centrality, we need the diagonal of eA

• In the case of the spectrogram, we need to compute the trace of multiple step-
functions

8/31/2016 6

Stochastic Matrix-Function Estimator (SME)

Use Ns test vectors in blocks of size Nb

Initialize the Nb columns of V with random -1/1 (2%)

Compute W = f(A) V with Chebyshev polynomials of
the first kind. (97% of run time)

Accumulate partial results over test vectors (1%)

Normalize to get final result

R = zero();

for l = 1 to Ns/Nb do

forall e in V do

e = (rand()/RAND_MAX<0.5) ? -1.0 : 1.0;

done

M0 = V

W = c[0] * V // AXPY

M1 = A * V // SPMM

W = c[1] * M1 + W // AXPY

for m = 2 to Nc do

M0 = 2 * A * M1 - M0 // SPMM

W = c[m] * M0 + W // AXPY

pointer_swap(M0,M1)

done

R += W * VT // SGEMM / DOT

done

E[f(A)] = R/Ns

[1] Peter W. J. Staar, Panagiotis Kl. Barkoutsos, Roxana Istrate, A. Cristiano I. Malossi, Ivano Tavernelli,Nikolaj Moll, Heiner Giefers, Christoph Hagleitner, Costas Bekas, and
Alessandro Curioni. “Stochastic Matrix-Function Estimators: Scalable Big-Data Kernels with High Performance.” IPDPS 2016. (received Best Paper Award)

Framework to approximate (a subset of elements of) the matrix f(A), where f is an arbitrary
function and A is the adjacency matrix of the graph [1].

8/31/2016 7

Accelerated Stochastic Matrix-Function Estimator

R = zero();

for l = 1 to Ns/Nb do

forall e in V do

e = (rand()/RAND_MAX<0.5) ? -1.0 : 1.0;

done

M0 = V

W = c[0] * V // AXPY

M1 = A * V // SPMM

W = c[1] * M1 + W // AXPY

for m = 2 to Nc do

M0 = 2 * A * M1 - M0 // SPMM

W = c[m] * M0 + W // AXPY

pointer_swap(M0,M1)

done

R += W * VT // SGEMM / DOT

done

E[f(A)] = R/Ns

CPU FPGA

V

W

V

W
…

8/31/2016 8

Accelerated Stochastic Matrix-Function Estimator

R = zero();

for l = 1 to Ns/Nb do

forall e in V do

e = (rand()/RAND_MAX<0.5) ? -1.0 : 1.0;

done

M0 = V

W = c[0] * V // AXPY

M1 = A * V // SPMM

W = c[1] * M1 + W // AXPY

for m = 2 to Nc do

M0 = 2 * A * M1 - M0 // SPMM

W = c[m] * M0 + W // AXPY

pointer_swap(M0,M1)

done

R += W * VT // SGEMM / DOT

done

E[f(A)] = R/Ns

CPU FPGA FPGA

V

W

V

W
…

Map the entire outer
loop onto the FPGA
• (Almost) no host-

device communication
•3 sequential stages
•No double buffering

needed
•4 asynchronous

kernels in inner loop

8/31/2016 9

…

SME Architecture – Random Number Generator

• xorshift64 based random number
generator to generate Rademacher
distribution
• High quality, passes many passes

many statistical tests [2]

• Well suited for FPGA implementation

• Initialize V, M0, and W on-the-fly

ulong2 xorshift64s (ulong x){
ulong2 res;
x ^= x >> 12;
x ^= x << 25;
x ^= x >> 27;
res.x = x;
res.y = x * 2685821657736338717ull;
return res;

}
__kernel
void rng(float *M0,*W,*V,cm, uint num, ulong seed){

ulong2 rngs = {rand, 0xdecafbad};
ulong rs; float rn;
for(unsigned k = 0; k < num; k+=N_UNROLL){

rngs = xorshift64s(rngs.x);
rs = rngs.y;
#pragma unroll N_UNROLL
for(unsigned b = 0; b < N_UNROLL; b++){

rn = ((rs >> b) & 0x1) ? -1.0 : 1.0;
V[k+b] = rn;
M0[k+b] = rn;
W[k+b] = cm*rn;

}
}[2] George Marsaglia. “Xorshift RNGs,” Journal of Statistical Software, 2003.

8/31/2016 10

RNG
(incl. RHS init)

V

M0

W

cm0seed

CSR

Reader

IA

JA

A

RHS

PrefetcherM0

c_JA

c_A

c_e

c_rhs

SpMM
c_S

…

float16

128-wide

SIMD

int
rows

nnz

rows

AXPYM0

W

M0

W

rows cm

SME Architecture: CSR Sparse Matrix Multiplication
6 8 1

6 7
2 2 5

8 5 7
3 4 6

2 6 8
1 5 7

7 8

0 2 6 1 3 2 3 7 0 4 5 1 6 7 0 1 2 1 2 4 2 5

6 8 1 6 7 2 2 5 8 5 7 2 4 6 2 6 8 1 5 7 7 8A

JA

IA 0 3 5 8 11 14 17 20 22

= x

sparse matrix in CSR format sparse matrix-matrix multiplication

• Asynchronous kernels
• Synchronization via

FIFO channels

8/31/2016 11

$

float4

Resource Utilization for Kernels on Stratix-V 5SGXA7

0

10

20

30

40

50

60

RNG matrix_prefetch rhs_prefetch SpMM AXPY accu_result

LEs FFs RAMs DSPs
8/31/2016 12

Inner loop

SME on Heterogeneous System

POWER8 heterogeneous node

1. Dual-socket 6-core CPU, 96 threads
• IBM xlC compiler using OpenMP and Atlas BLAS

2. NVIDIA Tesla K40 GPU
• CUDA 7.5 with cuBLAS

• Self-developed SpMM outperforms cusparseScsrmm()

3. Nallatech PCIe-385 card w/ Altera Stratix-V FPGA
• Altera OpenCL HLS

8/31/2016 13

SME – Approximation Quality on the 3 Platforms

• Estimation quality depends on
several factors
• Number of test vectors

• Number of terms in Chebyshev
expansion

• Quality of the random number
generator used to initialize the
test vectors

• Precision of floating point
operations

8/31/2016 14

8/31/2016 15

Power Profiling

• POWER8 On-Chip Controller (OCC)
• Enables fast, scalable monitoring (ns timescale)

• OCC is implemented in a POWERPC 405

• Uses continuous running, real-time OS

• Monitors workload activity, chip temperature

and current

• Trace power consumption using Amester
• Tool for out-of-band monitoring of POWER8 servers

• Open sourced on github: github.com/open-power/amester

• Current sensors for various domains (socket, memory buffer/DIMM, GPU, PCIe, fan, …)

• Compute power consumption: 𝑃𝑐𝑜𝑚𝑝 = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑖𝑑𝑙𝑒

Application-Level Power Traces

FPGACPU (6 threads) GPU

Device
reconfiguration

CPU (1 thread)

8/31/2016 16

SME – Energy-Efficiency Analysis

Platform Run time [s] Dynamic Power [W] Energy to Solution [kJ]

CPU 172.55 143.92 24.83

CPU 232.31 57.01 13.24

GPU 19.52 155.42 3.03

FPGA 114.00 9.13 1.04

CPU IBM POWER8 2-socket 12-core
FPGA Nallatech PCIe-385 with Altera Stratix-V
GPU NVIDIA K40

Fastest CPU version (6 threads)

Most efficient CPU version (1 thread)

FPGA is ~6x slower but ~3x more energy-efficient

compared to the GPU

8/31/2016 17

Conclusion
• Accelerators outperform the CPU. GPUs are dominant in terms of absolute

performance
• GPU is 12x, FPGA 2x faster than a CPU core

• The compute energy for the FPGA outstanding
• 3x better compared tor GPU, 13x better compared to the CPU

• What about the idle power? (~550W for the system we used)
• We need energy-proportional computing

• Cloud: Accelerators free CPU cycles

• Cloud-FPGA: Standalone, network-attached FPGA to remove “host overhead”

• OpenCL increased productivity
• Short design time, (almost) no verification

• Optimization is cumbersome

8/31/2016 18
R

el
at

iv
e

Pe
rf

o
rm

an
ce

Questions?
Heiner Giefers

IBM Research – Zurich

hgi@zurich.ibm.com

26th International Conference on Field-
Programmable Logic and Applications
29th August – 2nd September 2016
SwissTech Convention Centre
Lausanne, Switzerland

