
Scalable and Modularized

RTL Compilation of

Convolutional Neural Networks

onto FPGA

Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, Sarma Vrudhula†

School of Electrical, Computer and Energy Engineering

†School of Computing, Informatics, Decision Systems Engineering

Arizona State University, Tempe, USA

Outline

 Overview of CNN Algorithms

 Current CNN Accelerators & Motivation

 Proposed Modular CNN RTL Compiler

 Experimental Results

 Conclusion

- 2 -

Convolutional Neural Networks (CNN)

- 3 -

 Dominant approach for recognition and detection tasks

 Highly iterative with a few computing primitives

 Composed of multiple types of layers

 Evolving rapidly with more layers to achieve higher accuracy

Pooling

(Subsampling)

Convolution

+Activation

Fully-connected

(Inner Product)

Convolution

+Activation

Input Image Feature Maps

From a few to >100 layers

CNN Layers and Structure

 Convolution (conv or cccp)
– 3D MAC operations

– Constitute >90% of the total operations

 Pooling (pool)
– Keep the maximum or average value of pixels

 LRN (norm)
– Local response normalization : non-linear

 Fully-connected (fc)
– Matrix-vector multiplication

– Require large volume of weights

 CNN Structure for image classification
– AlexNet [A. Krizhevsky, NIPS2012]

– NIN [M. Lin, ICLR2014]

- 4 -

Outline

 Overview of CNN Algorithms

 Current CNN Accelerators & Motivation

 Proposed Modular CNN RTL Compiler

 Experimental Results

 Conclusion

- 5 -

Comparison of CNN Accelerators

- 6 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

 Flexible deep learning framework with modularity

 Accelerated on GPU with thousands of parallel cores

 High power consumption (>100W)

Software, GPU [Y. Jia, Caffe; M. Abadi, TensorFlow]

Comparison of CNN Accelerators

- 7 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

 High-level synthesis (e.g. OpenCL) based FPGA accelerator

 Short turnaround time and fast design optimization

 Cannot exploit low-level hardware structures

HLS, FPGA [C. Zhang, FPGA2015; N. Suda, FPGA2016]

Comparison of CNN Accelerators

- 8 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

 Agnostic to the CNN model configuration

 Inefficient hardware resource usage

RTL, generic CNN accelerator [C. Farabet, CVPR2011]

Comparison of CNN Accelerators

- 9 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

 High efficiency with greater acceleration

 Poor flexibility, long turnaround time

 Require in-depth understanding of FPGA/ASIC

RTL, optimized for a specific CNN [J. Qiu, FPGA2016]

Comparison of CNN Accelerators

- 10 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

 Modular and scalable hardware design framework

 Integrate the flexibility of HLS and the finer level optimization of RTL

Proposed RTL compiler

Comparison of CNN Accelerators

- 11 -

Throughput

Resource
Utilization

Energy EfficiencyReconfigurability

Design
Speed

Software, GPU

HLS, FPGA

RTL, generic CNN accelerator

RTL, optimized for a specific CNN

Proposed RTL compiler

Outline

 Overview of CNN Algorithms

 Current CNN Accelerators & Motivation

 Proposed Modular CNN RTL Compiler

 Experimental Results

 Conclusion

- 12 -

Proposed CNN RTL Compiler

- 13 -

 Modular and scalable hardware design framework

 Compile end-to-end CNNs into efficient RTL codes for FPGA/ASIC

Parameterized RTL scripts

(Verilog)

FPGA design tools

e.g. Quartus

FPGA programming file

RTL

compiler

(Python)

CNN models

• Connection of layers

• Type of layers

• Number and size of

kernel/feature maps

Computing resources

• Number of multipliers

• Top-level system

• Conv/Pool/Norm/FC

modules

• RTL DMA controller

• On-chip buffers

• Data router

Convolution Parameters and Loops

- 14 -

Loop-4 Across the output feature maps of Nof

Loop-3 Across the input feature maps of Nif

Loop-2 Scan within one input feature map along X×Y

Loop-1 MAC within a kernel window of K×K

…
…

⊗

Nif

K
K

Xi

Yi

Nif K

K

K
K

Nif

Nif

Nof

Xo

Yo

K
K

Input feature maps

Kernel (filter) maps

Output feature maps

=

Strategy to Accelerate Convolution

- 15 -

…
…

⊗

K
K

Xi

Yi

K

Xo

Yo

=

Unroll

Loop-3

Unroll

Loop-4

Unroll

Loop-3

 If Nm>Nif : fully unroll Loop-3 and further unroll Loop-4

– Nm/Nif output feature maps with shared features

 If Nm<Nif : partially unroll Loop-3

– Repeat kernel window sliding by Nif/Nm times

 Serially compute Loop-1 before Loop-2 : reduce # of partial sums

K

Nif

Nif

Nof

(Nm = # of multipliers)

CONV Module and Components

- 16 -

 Control logic

– Control the sliding of four loops by counters

– Counters are parameterized to K, X, Y, Nif and Nof of each layer

– Generate buffer addresses

CONV Module and Components

- 17 -

 Adder Trees

– # of fan-in = Nif, # of adders = Nm/Nif

– Sum results from Nif parallel multipliers

– Accumulate within one kernel window (K×K)

– Shared by convolution layers with identical Nif.

 ReLU = max(pixel, 0)

– Check the sign bit

 POOL (MAX or AVE) Module

 NORM Module

 FC Module

– Perform matrix-vector multiplication (special form of convolution)

– Share multipliers with CONV

– Adders are shared across all FC layers

POOL, NORM, and FC Modules

- 18 -

Integration of Modules

- 19 -

 Overall CNN Accelerator

Integration of Modules (Controller)

- 20 -

 Controller

– Direct the layer by layer serial computation of modules

Integration of Modules (Data Router)

- 21 -

 Feature Data Router

– Select write and read data of two adjacent modules

– Assign buffer outputs to POOL or shared multipliers

Integration of Modules (Memory)

- 22 -

 Feature Buffers

– Feature maps are stored in separate on-chip RAMs

Integration of Modules (Memory)

- 23 -

 Weight Buffers

– FC weights transfer is overlapped with its computation

– CONV weights transfer is before its computation

Outline

 Overview of CNN Algorithms

 Current CNN Accelerators & Motivation

 Proposed Modular CNN RTL Compiler

 Experimental Results

 Conclusion

- 24 -

Experimental Setup & FPGA System

 AlexNet and NIN CNN models

 Stand-alone DE5-Net board with Altera Stratix-V GXA7 FPGA chip

– 622K logic elements, 256 DSP blocks, 2560 M20K RAMs.

 Synthesized by Altera Quartus tool.

- 25 -

Control the transfer of data from flash memory to

SDRAM, and then start the CNN acceleration process.

Transfer data from

SDRAM to on-chip RAMs.

Standard Altera IP

start

Experimental Results

- 26 -

J. Qiu

FPGA2016

C. Zhang

FPGA2015

N. Suda

FPGA2016
This work This work

FPGA
Zynq

XC7Z045

Virtex-7

VX485T

Stratix-V

GXA7

Stratix-V

GXA7

Stratix-V

GXA7

Design Entry RTL C-language OpenCL RTL Compiler RTL Compiler

CNN Model VGG - 16 AlexNet AlexNet AlexNet NIN

of op. per image 30.76 GOP 1.33 GOP 1.46 GOP 1.46 GOP 2.2 GOP

DSP Utilization 780 (89%) 2,240 (80%) 256 (100%) 256 (100%) 256 (100%)

Logic Utilizationa 183K (84%) 186K (61%) 114K (49%) 121K (52%) 112K (48%)

On-chip RAMb 486 (87%) 1,024 (50%) 1,893 (74%) 1,552 (61%) 2,330 (91%)

Convolution throughput 187.80 GOPS 61.6 GFOPS 67.5 GOPS 134.1 GOPS 117.3 GOPS

Overall throughput 136.97 GOPS N/A 60.2 GOPS 114.5 GOPS 117.3 GOPS

a. Xilinx FPGAs in LUTs and Altera FPGAs in ALMs

b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

 Compared to OpenCL design, 1.9X overall throughput improvement

– On the same FPGA board

– Using similar hardware resources

 Compared to HLS design, 2X convolution throughput improvement

Experimental Results

- 27 -

J. Qiu

FPGA2016

C. Zhang

FPGA2015

N. Suda

FPGA2016
This work This work

FPGA
Zynq

XC7Z045

Virtex-7

VX485T

Stratix-V

GXA7

Stratix-V

GXA7

Stratix-V

GXA7

Design Entry RTL C-language OpenCL RTL Compiler RTL Compiler

CNN Model VGG - 16 AlexNet AlexNet AlexNet NIN

of op. per image 30.76 GOP 1.33 GOP 1.46 GOP 1.46 GOP 2.2 GOP

DSP Utilization 780 (89%) 2,240 (80%) 256 (100%) 256 (100%) 256 (100%)

Logic Utilizationa 183K (84%) 186K (61%) 114K (49%) 121K (52%) 112K (48%)

On-chip RAMb 486 (87%) 1,024 (50%) 1,893 (74%) 1,552 (61%) 2,330 (91%)

Convolution throughput 187.80 GOPS 61.6 GFOPS 67.5 GOPS 134.1 GOPS 117.3 GOPS

Overall throughput 136.97 GOPS N/A 60.2 GOPS 114.5 GOPS 117.3 GOPS

a. Xilinx FPGAs in LUTs and Altera FPGAs in ALMs

b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

 Model customized RTL and more DSPs improve throughput

 More regular structure of VGG benefits the performance

– Uniform kernel map size, Nif in power of two, no norm

Experimental Results

- 28 -

J. Qiu

FPGA2016

C. Zhang

FPGA2015

N. Suda

FPGA2016
This work This work

FPGA
Zynq

XC7Z045

Virtex-7

VX485T

Stratix-V

GXA7

Stratix-V

GXA7

Stratix-V

GXA7

Design Entry RTL C-language OpenCL RTL Compiler RTL Compiler

CNN Model VGG - 16 AlexNet AlexNet AlexNet NIN

of op. per image 30.76 GOP 1.33 GOP 1.46 GOP 1.46 GOP 2.2 GOP

DSP Utilization 780 (89%) 2,240 (80%) 256 (100%) 256 (100%) 256 (100%)

Logic Utilizationa 183K (84%) 186K (61%) 114K (49%) 121K (52%) 112K (48%)

On-chip RAMb 486 (87%) 1,024 (50%) 1,893 (74%) 1,552 (61%) 2,330 (91%)

Convolution throughput 187.80 GOPS 61.6 GFOPS 67.5 GOPS 134.1 GOPS 117.3 GOPS

Overall throughput 136.97 GOPS N/A 60.2 GOPS 114.5 GOPS 117.3 GOPS

a. Xilinx FPGAs in LUTs and Altera FPGAs in ALMs

b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

 NIN has more convolution layers and more operations

 Similar throughput can be achieved for both models

0.61

0.85

0.56

0.64

2.83

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

A
le

x
N

e
t

N
IN

Execution Time (ms)

CONV1 CONV2 CONV3 CONV4 CONV5 CCCPs DMA_CONV POOLs FC6&7&8

Timing Breakdown of Layers

- 29 -

 FC latency is determined by the DMA transfer delay that

covers the computation latency.

 DMA transfer latency of CONV weights is NOT hidden.

Convolution layers = 17.04 ms (90.9%)

Convolution = 8.74 ms (68.5%)
3.66 2.00 1.46 0.97 0.65

3.53 5.83 1.95 1.67 4.06

A
le

x
N

e
t

N
IN

Logic and DSP Block Utilization

- 30 -

 Stratix-V GXA7 has only 256 DSP blocks.

 Multipliers are implemented by both logic elements and DSP blocks.

 Layers with same Nif are combined to be one module

with shared adder tree.

Logic Utilization in ALMs # of DSP Blocks

AlexNet

NIN

AlexNet

NIN

On-chip RAM Breakdown

- 31 -

 RAMs are stacked for modules with shallow word depths

 RAMs are shared by non-consecutive modules

 Weight buffers to receive weights from external memory

On-chip RAMs Utilization in M20K blocks

AlexNet

NIN

Power Measurement and Breakdown

 Measured power of DE5-Net

– running nothing is 16.5W

– running AlexNet is 19.5W

– running NIN is 19.1W

- 32 -

0% 20% 40% 60% 80% 100%

Simulation based power breakdown of AlexNet accelerator

Multipliers CONVs FC NORMs POOLs RAM Routing

0% 20% 40% 60% 80% 100%

Simulation based power breakdown of FPGA chip

AlexNet DDR3 Controller mSGDMA I/O Others

36.8%

Computing Modules RAM Routing

AlexNet Accelerator

 Simulated power of Stratix V

– running AlexNet is 12.8W

36.4%

21.2% 42.1%

14.5% 3.1% 43.3%

ImageNet Accuracy

 Data width: Features = 10-bit, Weights = 8-bit

 The portion of integer and fractional bits are adjusted

according to the range of values for different layers.

- 33 -

Model accuracy

comparison

Software implementation

(Caffe tool, 32-bit)

FPGA implementation

(Our work)

CNN model Top-1 Top-5 Top-1 Top-5

AlexNet 56.78 % 79.72 % 55.64 % 79.32 %

NIN 56.14 % 79.32 % 55.74 % 78.96 %

Tested on 5K images from ImageNet 2012 validation database.

Reduce data width requirement

while retaining the same accuracy level

Outline

 Overview of CNN Algorithms

 Current CNN Accelerators & Motivation

 Proposed Modular CNN RTL Compiler

 Experimental Results

 Conclusion

- 34 -

Conclusion

 Modularized and scalable RTL design for CNN

 Demonstrated on Altera Stratix-V GXA7 FPGA

 End-to-end implementation of deep CNNs

 114.5 GOPS for AlexNet and 117.3 GOPS for NIN

 1.9X performance improvement compared to

OpenCL design on the same FPGA

 Future work : increase generality and efficiency

for larger state-of-the-art CNNs.

- 35 -

Thanks!

Questions?

- 36 -

