PSU s FPL

1b

Scalable and Modularized
RTL Compilation of
Convolutional Neural Networks
onto FPGA

Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, Sarma Vrudhulat

School of Electrical, Computer and Energy Engineering

tSchool of Computing, Informatics, Decision Systems Engineering

Arizona State University, Tempe, USA

Qutline

= Overview of CNN Algorithms

= Current CNN Accelerators & Motivation
= Proposed Modular CNN RTL Compiler
= Experimental Results

® Conclusion

Convolutional Neural Networks (CNN)

= Dominant approach for recognition and detection tasks
= Highly iterative with a few computing primitives
= Composed of multiple types of layers

= Evolving rapidly with more layers to achieve higher accuracy

From a few to >100 layers

Pooling Fully-connected
+ (Subsampling) + (Inner Product)

CNN Layers and Structure

(or ccep)
— 3D MAC operations
— Constitute >90% of the total operations

Pooling (pool)

— Keep the maximum or average value of pixels

LRN (norm)

— Local response normalization : non-linear

Fully-connected (fc)

— Matrix-vector multiplication
— Require large volume of weights

CNN Structure for image classification

— AlexNet [A. Krizhevsky, NIPS2012]
— NIN [M. Lin, ICLR2014]

AlexNet

image

v

convi

¥

norm1

v

pooll

v

conv2

¥

norm2

v

pool2

v

conv3

v

conv4

v

convb

'

pool5

v

fcé

v

fc7

v

fc8

¥

classification
result

NIN

image

L}

conv1i

¥

cccpi

v

ccecp2

¥

pool1

v

conv2

'

cccp3

¥

cccpd

I |
I |
I |
I |
I |
I |
I |
I |
¥

[pooiz |
I |
I |
I |
I I
I |
I |
I |
I |

¥

conv3

v

cccpbs

¥

cccpb

v

pool3

L}

conv4

v

ccep?

'

cccp8

¥

pool4

| classification result

Qutline

= Current CNN Accelerators & Motivation

Comparison of CNN Accelerators

—e— Software, GPU [Y. Jia, Caffe; M. Abadi, TensorFlow]
> Flexible deep learning framework with modularity
» Accelerated on GPU with thousands of parallel cores
» High power consumption (>100W)
Throughput

Design Resource
Speed Utilization

Reconfigurability Energy Efficiency

Comparison of CNN Accelerators

—o— HLS, FPGA [C. Zhang, FPGA2015; N. Suda, FPGA2016]
» High-level synthesis (e.g. OpenCL) based FPGA accelerator
» Short turnaround time and fast design optimization
» Cannot exploit low-level hardware structures
Throughput

Resource
Utilization

Reconfigurability Energy Efficiency

Comparison of CNN Accelerators

» Agnostic to the CNN model configuration
> Inefficient hardware resource usage

Throughput
,Q
’
’
4
7
’I
,I
,l
’I
- ,,,
Design S == N
Speed -~ \
I\ Y
\ '
| '
\ ?
R !
VA T
LO /’ /’
\ I,/
\ >
V2"

\

\

\

\

\
Reconflgurabllltyy

Resource
Utilization

Energy Efficiency

Comparison of CNN Accelerators

—o— RTL, optimized for a specific CNN [J. Qiu, FPGA2016]
» High efficiency with greater acceleration
» Poor flexibility, long turnaround time
» Require in-depth understanding of FPGA/ASIC
Throughput

Resource
Utilization

Reconfigurability Energy Efficiency

Comparison of CNN Accelerators

—o— Proposed RTL compiler
» Modular and scalable hardware design framework
> Integrate the flexibility of HLS and the finer level optimization of RTL

Throughput

N Resource
¢ Utilization

Reconfigurability Energy Efficiency

- 10 -

Comparison of CNN Accelerators

-e- Software, GPU
-—HLS, FPGA

- RTL, optimized for a specific CNN
——Proposed RTL compiler Throughput

N Resource
s Utilization

b’

Reconfigurability Energy Efficiency

-11 -

Qutline

" Proposed Modular CNN RTL Compiler

- 12 -

Proposed CNN RTL Compiler

= Modular and scalable hardware design framework
= Compile end-to-end CNNs into efficient RTL codes for FPGA/ASIC

/ CNN models \

« Connection of layers

» Type of layers

* Number and size of
kernel/feature maps

Computing resources

RTL
compiler
(Python)

K Number of multipliersj

FPGA

modules
> « RTL DMA controller

Parameterized RTL scripts
(Verilog)

* Top-level system
« Conv/Pool/Norm/FC

* On-chip buffers —

design tools G
e.g. Quartus

FPGA programming file

- 13 -

Convolution Parameters and Loops

X
Input feature maps N v Output feature maps
|v\\ If K A
: l\\ E K :
- :
K-~~~ :
7227 Y @ N, K
m P . KK :
Nif xi \\ :
\ |
\ K ' Kernel (filter) maps
Nis K

- === Loop-4 Across the output feature maps of Nof

- ——-—= Loop-3 Across the input feature maps of Nif

--—-— Loop-2 Scan within one input feature map along XxY
-—-—-— Loop-1 MAC within a kernel window of KxK

Strategy to Accelerate Convolution

N.
I| i - K
! . K
SN ®
<,
| le

- // . A k
l -7 . \
-1 =-—---- - Unroll
Unroll

X. - Loop-4

Loop-3 | Unroll'\\;;;
Loop-3 —= (Nm = # of multipliers)

= If Nm>Nif : fully unroll Loop-3 and further unroll Loop-4

— Nm/Nif output feature maps with shared features
= |f Nm<Nif : partially unroll Loop-3
— Repeat kernel window sliding by Nif/Nm times
= Serially compute Loop-1 before Loop-2 : reduce # of partial sums

CONV Module and Components

= Control logic

— Control the sliding of four loops by counters

— Counters are parameterized to K, X, Y, Nif and Nof of each layer
— Generate buffer addresses

Input

Feature [«

Buffers

Weight
Buffers

Start Signal —

4 v

Read Addresses

Shared

Control Logic

Write Address

Multiplier lteration 1

>

CONV OQutput

Feature

Bank

>

Buffers

Bias Registers

Groups of
E Adder Trees

A 4

ReLU)—)
Data

=P Control

- 16 -

CONV Module and Components

m Adder Trees

— # of fan-in = Nif, # of adders = Nm/Nif

— Sum results from Nif parallel multipliers

— Accumulate within one kernel window (KxK)

— Shared by convolution layers with identical Nif.

. = max(pixel, 0)

— Check the sign bit
Start Signal —

Input 4 v
"Pu Read Addresses : .
Feature | Control Logic Write Addresp |
Buffers | Shared Output
Multiplier lteration l CONV R e
Bank Buffers
Weight | Groups of > ReLU
Buffers) Adder Trees
‘L v * Data
Bias Registers =P Control

-17 -

POOL, NORM, and FC Modules

= POOL (MAX or AVE) Module
Start Signal _l

Read Addresé .| Write Address

< Control Logic >
Input Output
Feature l, POOL Feature

Buff
Buffers Comparators or T 3 Data
Accumulators — Control
= NORM Module
Start Signal Write Address _

A 4

Control Logic
CONV NORM Output
Module 4/1\. Feature
Square Lookup Table Multiplier Buffers
l + Adder (Nonlinear) P
= FC Module

— Perform matrix-vector multiplication (special form of convolution)
— Share multipliers with CONV
— Adders are shared across all FC layers

- 18 -

Integration of Modules

= Qverall CNN Accelerator

Groups of Feature Buffers

Al Al At

Feature Data Router

A
Al Al Al Al
Pooling Fully-connected Convolution Normalization
(POOL) | (FC) (CONV) (NORM)
(Multiplier Bank)

Feature Data Router B ctionsidna
1 » Kernel Weights

Feature Data

. =
Controller/Sequencer Weight Buffers

A

Ext |
(DMA Configuration J++{ mSGDMAEngine)« yemory ntetace

- 19 -

Integration of Modules (Controller)

= Controller
— Direct the layer by layer serial computation of modules

f 1 A I
1 1 1]
- . [l = Control Signal
1 B » Kernel Weights
- Feature Data
Controller/Sequencer

()|)

- 20 -

Integration of Modules (Data Router)

= Feature Data Router

— Select write and read data of two adjacent modules

— Assign buffer outputs to POOL or shared multipliers
Groups of Feature Buffers

Al Al Al

Feature Data Router :
A

Al Al Al At

Pooling Fully-connected Convolution Normalization

(POOL) | (FC) (CONV) (NORM)
(Multiplier Bank)
Feature Data RouterT g e
» Kernel Weights
1 . » Feature Data
Controller/Sequencer Weight Buffers

A

E |
(DMA Configuration J++{ MSGDMAEngine <@ fiemor ineriace

-21 -

Integration of Modules (Memory)

= [Feature Buffers
— Feature maps are stored in separate on-chip RAMs

Groups of Feature Buffers

Al Al Al

(Feature Data Router

1 I 1 1 1

Pooling ‘ Fully-connected Convolution Normalization |
(POOL) | (FC) (CONV) (NORM)
(Multiplier Bank)
(Feature Data Router = Control Signal
1 » Kernel Weights
. » Feature Data
Controller/Sequencer Weight Buffers

! A

('DMA Configuration Je+{ mSGDMA Engine |« oy intertace

-22 -

Integration of Modules (Memory)

= Weight Buffers

— FC weights transfer is overlapped with its computation
— CONV weights transfer is before its computation

A i 1

- . = Control Signal

1 » Kernel Weights
Weight Buffers
! A

- External
(DMA Configuration H mMSGDMA Engine]@ M’;ﬁﬂf’y Interface

Qutline

= Overview of CNN Algorithms

= Current CNN Accelerators & Motivation
= Proposed Modular CNN RTL Compiler
= Experimental Results

® Conclusion

_ 24 -

Experimental Setup & FPGA System

= AlexNet and NIN CNN models

= Stand-alone DE5-Net board with Altera Stratix-V GXA7 FPGA chip
— 622K logic elements, 256 DSP blocks, 2560 M20K RAMSs.

" _' Groups of Feature Buffers ‘
= Synthesized by Altera Quartus tool. B | S E— .
-- - Al At AL AL
i Start E [5308%)? J[Fullyt-;;gfl;ecledJ [C:;(r;viorl{\‘t);)nﬁ[rwo(r;nggzat)non}
i = Control Bus i (" Moltplior Bank)
: ’ Data BUS ‘t : —}[Feature Data Router‘\] =* Control Signal
N == Kernel Weights
-i_ — N I OS I I P m SG DMA ‘ : IConircIIerISequenoerI [Weight Buffers ‘ = Feaure Daia
1 1
: : rOCGSSOr \\ : [_DMACDnﬁguratiUnHmSGDMAEngiHGJ«E’I’::r:;‘\merfane
¥ 1 1 S
H < Avalon Interface >\I
] N
1! LN
¥ ! 1 11 i 'y Transfer data from
I -
:i Flash Controller H DDR3 Controller i SDRAM to on-chip RAMs.
I i_ On-chip i
i ’f Off-chip * '
1 On-board Flash External Memory Standard Altera IP
|
|
|
L

Control the transfer of data from flash memory to

> SDRAM, and then start the CNN acceleration process.

- 25 -

Experimental Results

J. Qiu
FPGA2016
FPGA xCT2085
Design Entry RTL
CNN Model VGG - 16
of op. per image 30.76 GOP

DSP Utilization 780 (89%)

Logic Utilization® 183K (84%)

On-chip RAMP 486 (87%)
Convolution throughput 187.80 GOPS
Overall throughput 136.97 GOPS

C. Zhang
FPGA2015

Virtex-7
VX485T

C-language
AlexNet
1.33 GOP
2,240 (80%)
186K (61%)
1,024 (50%)

N/A

N. Suda
FPGA2016

Stratix-V
GXA7

OpenCL

AlexNet

1.46 GOP
256 (100%)
114K (49%)
1,893 (74%)
67.5 GOPS
60.2 GOPS

This work

Stratix-V
GXA7

RTL Compiler

AlexNet
1.46 GOP
256 (100%)
121K (52%)
1,552 (61%)

114.5 GOPS

This work

Stratix-V
GXA7

RTL Compiler
NIN
2.2 GOP
256 (100%)
112K (48%)
2,330 (91%)
117.3 GOPS
117.3 GOPS

= Compared to OpenCL design, 1.9X overall throughput improvement
— On the same FPGA board
— Using similar hardware resources

= Compared to HLS design, improvement

a. Xilinx FPGASs in LUTs and Altera FPGAS in ALMs |

- 26 - b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

Experimental Results

FPGA

Design Entry

CNN Model

of op. per image
DSP Utilization
Logic Utilization?
On-chip RAMP
Convolution throughput

Overall throughput

J. Qiu
FPGA2016

Zyng
XC72045

RTL
VGG - 16
30.76 GOP

183K (84%)
486 (87%)
187.80 GOPS
136.97 GOPS

;

C. Zhang
FPGA2015

Virtex-7
VX485T

C-language
AlexNet
1.33 GOP
2,240 (80%)
186K (61%)
1,024 (50%)

N. Suda
FPGA2016

Stratix-V
GXA7

OpenCL
AlexNet
1.46 GOP
256 (100%)
114K (49%)
1,893 (74%)

61.6 GFOPS 67.5 GOPS

N/A

= Model customized RTL and more
= More regular structure of VGG benefits the performance
— Uniform kernel map size, Nif in power of two, no norm

60.2 GOPS

Improve throughput

This work

Stratix-V
GXA7

RTL Compiler
AlexNet
1.46 GOP

121K (52%)
1,552 (61%)
134.1 GOPS
114.5 GOPS

This work

Stratix-V
GXA7

RTL Compiler
NIN
2.2 GOP
256 (100%)
112K (48%)
2,330 (91%)
117.3 GOPS
117.3 GOPS

- 27 -

a. Xilinx FPGAs in LUTs and Altera FPGASs in ALMs |
b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

Experimental Results

J. Qiu
FPGA2016
FPGA xCT2085
Design Entry RTL
CNN Model VGG - 16
of op. per image 30.76 GOP

780 (89%)
183K (84%)

DSP Utilization

Logic Utilization?

On-chip RAMP 486 (87%)
Convolution throughput 187.80 GOPS
Overall throughput 136.97 GOPS

C. Zhang
FPGA2015

Virtex-7
VX485T

C-language
AlexNet
1.33 GOP
2,240 (80%)
186K (61%)
1,024 (50%)

N. Suda
FPGA2016

Stratix-V
GXA7

OpenCL
AlexNet
1.46 GOP
256 (100%)
114K (49%)
1,893 (74%)

61.6 GFOPS 67.5 GOPS

N/A

60.2 GOPS

This work

Stratix-V
GXA7

RTL Compiler

AlexNet
1.46 GOP
256 (100%)
121K (52%)
1,552 (61%)
134.1 GOPS
114.5 GOPS

This work

Stratix-V
GXA7

RTL Compiler
NIN
2.2 GOP

256 (100%)
112K (48%)
2,330 (91%)
117.3 GOPS
117.3 GOPS

= NIN has more convolution layers and more operations
= Similar throughput can be achieved for both models

- 28 -

a. Xilinx FPGAs in LUTs and Altera FPGASs in ALMs |
b. Xilinx FPGAs in BRAMs (36 Kb) and Altera FPGAs in M20K RAMs (20 Kb)

Timing Breakdown of Layers

» DMA transfer latency of CONV weights is NOT hidden.
A

mCONV1 mCONV2 mCONV3 mCONV4 mCONV5 mCCCPs = DMﬁ_CONV mPOOLs mFC6&7&8

--
V4 --~-
V4 e~
--

o

1 | | | | | >
<= Convolution layers = 17.0280SH©0.9%)
-
o | | | e
E Convoelution = 8.74 MSNB8.5%)
o
< | | |
0.00 200 400 600 800 1000 1p.00 14.00 1600 18.00

Execution Timei(ms)

» FC latency is determined by the DMA transfer delay that
covers the computation latency.

- 29 -

Logic and DSP Block Utilization

» Stratix-V GXA7 has only 256 DSP blocks.
» Multipliers are implemented by both logic elements and DSP blocks.

P Y 7 1
V'ig / 4

1
Multipliers /’ !
CONV1 / 25.0% 200 >4 :
convs AlexMet ! AlexNet
CONV4&5 7 120 !
FC6&7&8 / 80 f
NORWMs Y; H
POOLs J 40 i
<0 . o Dlim
‘o 5000 10000 15000 ¥ 20000 25000 Multiplidrs NORM1 NORM2 NIOS Il
Multjpliers V"
ONV1 19.3% 250
CONV2+CCCP182
CONV3+CCCP334 200
CONV4+CCCP5&6 150
NIN NIN
%, POOLs
MLAB RAWNs 50 5)
R 0
\\ ? 5000 10000 15000 20000 MLIltlplleI'S POOL4 NIOS Il
\N\ . - . .
.\ Logic Utilization in ALMs # of DSP Blocks

S
\
\}

> Laflers with same Nif are combined to be one module
with shared adder tree.

- 30 -

On-chip RAM Breakdown

NORM2&POOR2&CONV5
ICONV3&4

-31 -

> Weigh:[buffers to receive weights from external memory
> IRAMsEare stacked for modules with shallow word depths
> iRAMsiare shared by non-consecutive modules

I
v

1

:CONV_Weights
¢ F!C_Weights

NORM1&POOLA1

COW_Weights
CONV1&CCCP2
CCCP1&POOL1
CONV2&CCCP4
CCCP3&POOL2
CONV3&CCCP6
CCCP5&POOL3

POOL5
FCB6&7&8
Others

AlexNet

0 50 100 150 200 250 300 350

Others

400

NIN

450

500

0 50 100 150 200 250 300 350

On-chip RAMs Utilization in M20K blocks

400

450

500

Power Measurement and Breakdown

= Measured power of DE5-Net = Simulated power of Stratix V
— running nothing is 16.5W — running AlexNet is 12.8W
— running AlexNet is 19.5W
— running NIN is 19.1W

Simulation based power breakdown of

Computing Modules RAM Routing
36.8% 21.2%

ok

20% 40% 60% - 100%
m Multipliers ®m CONVs mFC mNORMs = POOJ.s-#RAM m Routing

-
-
-
-
-
-
-
-
-
-
-

0

1
1
1
1
1
1
I -
1

Simulation based power breakdown of

AlexNet Accelerator 1% 43.3%
36.4%

0% 20% 40% 60% 80% 100%
m AlexNet m DDR3 Controller ® mSGDMA © I/O = Others

- 32 -

ImageNet Accuracy

= Data width: Features = 10-bit, Weights = 8-bit
= The portion of integer and fractional bits are adjusted

according to the range of values for different Iay%ers.

Reduce data width requirement
while retaining the same accuracy level

Model accuracy Software implementation FPGA implementation

comparison (Caffe tool, 32-bit) (Our work)
CNN model Top-1 Top-5 Top-1 Top-5
AlexNet 56.78 % 79.72 % 55.64 % 79.32 %
NIN 56.14 % 79.32 % 55.74 % 78.96 %

Tested on 5K images from ImageNet 2012 validation database.

-33 -

Outline

= Overview of CNN Algorithms

= Current CNN Accelerators & Motivation
= Proposed Modular CNN RTL Compiler
= Experimental Results

= Conclusion

- 34 -

Conclusion

= Modularized and scalable RTL design for CNN

= Demonstrated on Altera Stratix-V GXA7 FPGA

= End-to-end implementation of deep CNNs

= 114.5 GOPS for AlexNet and 117.3 GOPS for NIN

= 1.9X performance improvement compared to
OpenCL design on the same FPGA

= Future work : increase generality and efficiency
for larger state-of-the-art CNNSs.

- 35 -

|8 |

ARIZONA STATE
UNIVERSITY

Thanks!

Questions?

- 36 -

