
Automated Bug Detection for Pointers and Memory
Accesses in High-Level Synthesis Compilers

Pietro Fezzardi
pietro.fezzardi@polimi.it

Fabrizio Ferrandi
fabrizio.ferrandi@polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Milano, Italy

FPL 2016 – Lausanne – 01/09/2016

mailto:pietro.fezzardi@polimi.it
mailto:fabrizio.ferrandi@polimi.it

Outline

Introduction and Motivation

Background and Assumptions

Automated Bug Detection for Pointers

Evaluated Tools, Experiments and Results

Conclusion and Future Work

Motivation

Adoption of High-Level Synthesis is increasing
HLS tools are becoming increasingly complex
Memory optimizations bring substantial improvements
Memory bugs introduced by HLS tools are hard to debug

A methodology to automatically find memory bugs introduced by the compiler would:

• Make existing memory allocation and optimizations more reliable

• Ease development and deployment of new memory architectures in HLS

• Speed up testing of new memory optimizations in HLS

• Make easier for HLS developers and users to isolate the cause of bugs

P.Fezzardi – pietro.fezzardi@polimi.it 1 FPL 2016 – Lausanne – 01/09/2016

Goals

General Ideas

• Take advantage of HLS information to support all compiler optimizations
• Automatically isolate the wrong signal, failing operation and component
• Automatically backtrack the error to the original source code
• Avoid user interaction to enable massive automated testing in production

Goals Related to Pointers

• Specifically target memory bugs involving pointers and addresses
• Completely support C standard pointer based descriptions
• Support different memory technologies and partitioning patterns
• Independent of memory optimizations

P.Fezzardi – pietro.fezzardi@polimi.it 2 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)
DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)
DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)
DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)
DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Discrepancy Analysis Debug Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
address operations

SW memory locations
SW Call Context IDs

ASTS

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)
DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

start and end time
of the failed operation

value of the
related C variable SW call stack trace

P.Fezzardi – pietro.fezzardi@polimi.it 3 FPL 2016 – Lausanne – 01/09/2016

Memory Locations

Memory Location
A Memory Location 〈Mi , Bi , Si〉 is an unambiguous representation of a position in memory

In HW In SW
◦ Mi : unique identifier for a memory module ◦ Mi : can be omitted
◦ Bi : an offset in the memory module identified by Mi ◦ Bi : address in main memory
◦ Si : size of the memory location ◦ Si : size of the memory location

Similar to Location Sets [Wilson and Lam; PLDI’95] [Séméria and De Micheli; TCAD’01]

Abstract concepts, independent of the target memory architecture

HW Memory Locations are not addresses but can be directly translated to addresses

Evaluated HLS compilers (Bambu, LegUp, Commercial Tool) use equivalent representations

P.Fezzardi – pietro.fezzardi@polimi.it 4 FPL 2016 – Lausanne – 01/09/2016

Memory Allocation

For memory allocation, HLS tools take mainly two decisions:

which variables have to be allocated in memory

• usually global, static, volatile, arrays, and structs

• possibly others, according to alias analysis

the location where every memory-mapped variable is stored

• depends on HLS implementation

• depends on memory architecture of the generated design

• depends on the memory optimizations and partitioning

P.Fezzardi – pietro.fezzardi@polimi.it 5 FPL 2016 – Lausanne – 01/09/2016

Assumptions for Address Discrepancy Analysis

General Assumption I
Every HW Memory Location must be associated to a single memory-mapped variable

The inverse mapping of high-level variables onto HW Memory Locations must be known

It is simply the inverse of the mapping computed by memory allocation in HLS X

General Assumption II
It has to be possible to identify the signals representing pointer variables in HW

Previous results show that this is possible X

P.Fezzardi – pietro.fezzardi@polimi.it 6 FPL 2016 – Lausanne – 01/09/2016

Address Space Translation Scheme

Address Space Translation Scheme (ASTS)

Hardware Address Table (HAT) Software Address Table (SAT)

i 〈Mi , Bi , Si〉 j 〈CBi , CSi〉 i

i: variable identifier j: SW Call Context ID

〈Mi , Bi , Si〉: HW Memory Location 〈CBi , CSi〉: SW Memory Location

i: variable identifier

P.Fezzardi – pietro.fezzardi@polimi.it 7 FPL 2016 – Lausanne – 01/09/2016

The Software Call Context Identifier

In HW
The HAT is computed by memory allocation during HLS

Memory Locations in HW are defined once ahead of time

In SW
Local variables are allocated on the stack

Different Memory Location at every function call

An ID is necessary to distinguish between calls

An ID uniquely identifies a path on the call graph

Function calls are instrumented in the C code

Context ID and memory mapping are printed at runtime

fun a

fun b

fun c
int d;

&d =
0xFFFF1234

&d =
0xFFFF4321

P.Fezzardi – pietro.fezzardi@polimi.it 8 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

The Extended Address Discrepancy Analysis Flow

ORIGINAL
SOURCE

CODE
(C)

FRONTEND

CONTROL
DATA
FLOW

GRAPH
(CDFG)

HLS

FINITE
STATE

MACHINE
(FSM)

DATA
PATH
(DP)

BACKEND

HARDWARE
DESCRIPTION

LANGUAGE
(HDL)

EX
T

R
A

C
T

ED
IN

FO
R

M
AT

IO
N source level

information

instrumented
C code in SSA
after frontend
optimizations

memory layout
memory allocation

memory partitioning

FSM optimizations
chaining

pipelining
resource sharing

scheduling
binding

allocation

list of signals
to collect

HW traces

D
EB

U
G

G
IN

G
ST

EP
S

compilation
+

execution

SW Traces of
pointer operations

SW memory locations
SW Call Context IDs

SW Traces

cycle accurate
RTL simulation

HW Traces (VCD)

ASTS

DISCREPANCY ANALYSIS

D
EB

U
G

IN
FO

R
M

AT
IO

N

first mismatch between
HW and SW executions

faulty module
in HW design state of FSM

wrong variable
is a pointer

hierachical path and
name of the wrong signal

value of the
wrong signal failed operation in C

SW memory location
of the wrong pointer

start and end time
of the failed operation

value of the
related C variable SW call stack trace

HW memory location
addressed by wrong signal

P.Fezzardi – pietro.fezzardi@polimi.it 9 FPL 2016 – Lausanne – 01/09/2016

Address Discrepancy Algorithm
Shared Data: ASTS = (SAT, HAT)

1 bool discrepancy (j, s, h)
Input : j: SW Call Context ID

s: SW address assigned
to a pointer p in j

h: value of the signal
related to p in HW

Result : true if s and h mismatch,
false otherwise

2 i = search (j, s) in SAT;
3 if (i is not found) then
4 // s is not in range for any variable
5 return false;
6 else
7 〈Mi , Bi , Si〉 = search(i) in HAT;
8 if (〈Mi , Bi , Si〉 is not found) then
9 // not memory-mapped in HW

10 return true;
11 else
12 h’ = decodeHW (〈Mi , Bi , Si〉);
13 if h 6= h’ then
14 return true;
15 else
16 return false;

ASTS

HAT SAT
i 〈Mi , Bi , Si〉 j 〈CBi , CSi〉 i

f()

struct{
int b,
int c
} A;

g(&A.c);

g(int * d)
(context j)

void * p = d;
struct A

b
c

main memory

〈CBi , CSi〉
0xFFFF1234
sizeof(int)

struct A

b
c

Mi

Bi = 0x4
Si = sizeof(int)

module g

signal p

module f

P.Fezzardi – pietro.fezzardi@polimi.it 10 FPL 2016 – Lausanne – 01/09/2016

Evaluated HLS Tools

Bambu [Pilato et al; CODES+ISSS’11]

◦ Developed at Politecnico di Milano ◦ Based on GCC (4.5 up to 6)
◦ Free Software (GPLv3)

Commercial Tool

◦ Production-ready ◦ Recent version (late 2015 - early 2016)
◦ Targets Xilinx FPGAs ◦ Closed source proprietary license

LegUp [Canis at al.; TECS’13]

◦ Developed at University of Toronto ◦ Based on LLVM
◦ Free for non-commercial not-for-profit use

P.Fezzardi – pietro.fezzardi@polimi.it 11 FPL 2016 – Lausanne – 01/09/2016

Benchmarks

CHStone [Hara et al.; ISCAS’08]

◦ Well known benchmark suite for HLS ◦ 12 self-contained C programs
◦ Both contol- and data-oriented examples ◦ Try to settle a common ground for HLS tools

GCC C-torture

◦ More than 800 tests from GCC test suite ◦ Designed to stress test compilers
◦ Designed to test obscure corner-cases ◦ Selected 216 cases to test pointers

P.Fezzardi – pietro.fezzardi@polimi.it 12 FPL 2016 – Lausanne – 01/09/2016

Test Matrix

CHStone GCC C-torture

Bambu X

fully automated

X

fully automated
(several bugs found)

Commercial Tool

use partitioning directives
manual bug insertion
imitate known bugs found in Bambu
manual reconstruction of ASTS
manual execution

56/216 failed HLS
manual on a short list

LegUp X

partially automated

X

partially automated
(on a short list)

P.Fezzardi – pietro.fezzardi@polimi.it 13 FPL 2016 – Lausanne – 01/09/2016

Significance of Pointer Operations

ad
pc

m
O

0
ad

pc
m

O
3

ae
sO

0
ae

sO
3

bf
O

0
bf

O
3

df
ad

dO
0

df
ad

dO
3

df
di

vO
0

df
di

vO
3

df
m

ul
O

0
df

m
ul

O
3

df
sin

O
0

df
sin

O
3

gs
m

O
0

gs
m

O
3

jp
eg

O
0

jp
eg

O
3

m
ip

sO
0

m
ip

sO
3

m
pe

gO
0

m
pe

gO
3

sh
aO

0
sh

aO
3

C-
to

rt
ur

e

0%

20%

40%

60%

80%

100%

static % of pointer operations on the total

% of pointers with fully resolved alias analysis

P.Fezzardi – pietro.fezzardi@polimi.it 14 FPL 2016 – Lausanne – 01/09/2016

Significance of Pointer Operations

ad
pc

m
O

0
ad

pc
m

O
3

ae
sO

0
ae

sO
3

bf
O

0
bf

O
3

df
ad

dO
0

df
ad

dO
3

df
di

vO
0

df
di

vO
3

df
m

ul
O

0
df

m
ul

O
3

df
sin

O
0

df
sin

O
3

gs
m

O
0

gs
m

O
3

jp
eg

O
0

jp
eg

O
3

m
ip

sO
0

m
ip

sO
3

m
pe

gO
0

m
pe

gO
3

sh
aO

0
sh

aO
3

C-
to

rt
ur

e

0%

20%

40%

60%

80%

100%

static % of pointer operations on the total
% of pointers with fully resolved alias analysis

P.Fezzardi – pietro.fezzardi@polimi.it 14 FPL 2016 – Lausanne – 01/09/2016

Detected Bugs

Compiler Frontend
Wrong static analysis or IR manipulations

Example
Static bit-width analysis to reduce the bits of addresses
A bug caused a wrong number of bits to be computed
Wrong values were used to address the memory

Scheduling
Wrong construction of the FSM

• missing dependencies

• wrong computation of execution times

Example
Missing information about data dependencies
Scheduling decided to compute an address in advance
Data necessary for the computation was not ready yet
Again generating wrong addresses

Memory Allocation
Memories with wrong ports, size, latency, etc.

Memory too small
LOAD: read a corrupted data or hang
STORE: out-of-bound access

Memory too large
LOAD/STORE: wrong offset calculation; data corruption

Wrong latency
LOAD: use data before they are ready
STORE: release memory before data is stored

Interconnection
Connection of wrong modules
Wrong size of buses and other wirings

Example
Bug in bit-width analysis caused wrong size of address bus

P.Fezzardi – pietro.fezzardi@polimi.it 15 FPL 2016 – Lausanne – 01/09/2016

Conclusions and Future Work

Conclusion
X Extend Discrepancy Analysis to support pointers

X Effectively fill a considerable blank in Discrepancy Analysis

X Independent of compiler optimizations, memory technology and partitioning patterns

X Avoid user interaction to enable massive automated testing in production

X Find several bugs in different compiler steps not found by normal Discrepancy Analysis

Future Work
◦ Support for speculation

◦ Support for synthesis of dynamic allocation malloc()/free()

P.Fezzardi – pietro.fezzardi@polimi.it 16 FPL 2016 – Lausanne – 01/09/2016

Thank You for Your Attention

Questions?

Contact: pietro.fezzardi@polimi.it
Website: http://panda.dei.polimi.it

Backup Slides

Example where Commercial Tool fails HLS

int w(struct sockq *q, void *src , int len) {

char *sptr = src;

while (len --) {
q->buf[q->head ++] = *src ++;

if (q->head == NET_SKBUF_SIZE)
q->head = 0;

}

return len;
}

False Positive

int main () {

int *p, a[32] , b[32] , res = 0;

for (p = a; p < a + 32; p++)
res += something (p);

for (p = b; p < a + 32; p++)
res += something (p);

return res;
}

Solution to False Positives

Address SANitizer (ASAN)

• SW memory error detector
• Deployed both in GCC (from 4.8) and LLVM (from 3.1)

◦ compiler instrumentation pass
◦ run-time library to replace malloc()/free()

• Adds redzones around every variable

• If a redzone is accessed triggers an error

Address Discrepancy Analysis do not check out-of-bound addresses
Wild pointers operations are allowed in C

If a wild pointer is dereferenced in C ASAN catch it
Even if out-of-bounds pointers are not checked ASAN ensures everything is ok

Performance Overhead

ad
pc

m
O

0
ad

pc
m

O
3

ae
sO

0
ae

sO
3

bf
O

0
bf

O
3

df
ad

dO
0

df
ad

dO
3

df
di

vO
0

df
di

vO
3

df
m

ul
O

0
df

m
ul

O
3

df
sin

O
0

df
sin

O
3

gs
m

O
0

gs
m

O
3

jp
eg

O
0

jp
eg

O
3

m
ip

sO
0

m
ip

sO
3

m
pe

gO
0

m
pe

gO
3

sh
aO

0
sh

aO
3

C-
to

rt
ur

e

0%

50%

100%

150%

200%

Performance overhead compared to simulation

Coverage Metrics

Instruction Coverage (icov)

icov = # of checked static operations
of static operations

Statement Coverage (scov)

scov = # of statements executed at least once at runtime
of static statements

ccov: C statement coverage — vcov: Verilog statement coverage

Instruction Coverage 6= Statement Coverage
◦ scov is dynamic while icov is static
◦ icov has a much finer granularity (operations not statements)
◦ icov is meant to check how many operations can be checked even if they are not executed

Coverage Results

ad
pc

m
O

0
ad

pc
m

O
3

ae
sO

0
ae

sO
3

bf
O

0
bf

O
3

df
ad

dO
0

df
ad

dO
3

df
di

vO
0

df
di

vO
3

df
m

ul
O

0
df

m
ul

O
3

df
sin

O
0

df
sin

O
3

gs
m

O
0

gs
m

O
3

jp
eg

O
0

jp
eg

O
3

m
ip

sO
0

m
ip

sO
3

m
pe

gO
0

m
pe

gO
3

sh
aO

0
sh

aO
3

C-
to

rt
ur

e

0%

20%

40%

60%

80%

100%

ccov (gcov 4.9) vcov (Mentor Modelsim SE-64 10.3) icov (computed by our method)

Control Flow Traces (FCT)

Software and Hardware Executions
CDFG and a FSM are typical IRs for HLS compilers

Consider a CDFG and a FSM for a high-level function

From a control-flow standpoint, for a given input, they
represent SW and HW executions respectively

Definition: Software Control Flow Trace (SCFT)
The SCFT on a given input I is the ordered sequence
of BBs representing the execution of the CDFG

Definition: Hardware Control Flow Trace (HCFT)
The HCFT on the same input I the ordered sequence
of states describing the execution of the FSM

Control Data
Flow Graph

(CDFG)
Finite State

Machine
(FSM)

BB0

BB1

BB2

BB3

S0 0

S0 1

S0 2

S1 0

S1 1

S2

S3

SC
H

ED
U

LIN
G

OpTraces (OT)

Software and Hardware Operations
Control Flow information is not enough

Cannot spot bugs that do not alter the execution path

A finer granularity is necessary

Definition: Software Op Trace (SOT)
Given a Basic Block BBi and its associated list of
states S1, . . . , Sk , the Software OpTrace of BBi is the
list of results of the statements in that BB.

Definition: Hardware Control Flow Trace (HOT)
Let Sj be a state in the FSM. The Hardware OpTrace
of a state Sj the set of results of the operations
scheduled in that state.

CDFG
FSM

DATAPATH

BB1
statement 0
statement 1
statement 2
statement 3
statement 4

S1 0
operation 0
operation 1

S1 1
operation 2
operation 3
operation 4

HW component 0

HW component 1

HW component 2

HW component 3

SC
H

ED
U

LIN
G

B
IN

D
IN

G
A

LLO
C

AT
IO

N

	Introduction and Motivation
	Background and Assumptions
	Automated Bug Detection for Pointers
	Evaluated Tools, Experiments and Results
	Conclusion and Future Work
	Appendix

