
Efficient and Reliable High-Level Synthesis
Design Space Explorer for FPGAs

Dong Liu1, Benjamin Carrion Schafer2

Department of Electronic and Information Engineering

The Hong Kong Polytechnic University

adam.d.liu@connect.polyu.hk1, b.carrionschafer@polyu.edu.hk2,

1

Outline

• Objectives

• Introduction

• Motivational Example

• Proposed Design Space Explorer

• Experiment Results

• Conclusion

2

Objectives

• In this paper, the main objectives can be summarized as follows：

• To investigate the quality of the exploration results when using the results
(particularly area) reported after HLS to guide the explorer in finding the true
Pareto-optimal design (after logic synthesis).

• To propose a dedicated DSE for FPGAs based on a pruning with adaptive
windowing method using a Rival Penalized Competitive Learning (RPCL) model
to extract the design candidates to further (logic) synthesized.

3

Introduction: HLS Overview

• High Level Synthesis

4

Algorithm Level

Register-transfer
Level

Logic Level

Circuit Level

Layout Level

Behavioral
Description

Structural
Description

Physical
Description

High Level Synthesis

Logic Synthesis

Physical Synthesis

Catapult-C

CtoS LegUp

Introduction: HLS Advantages

• Many advantages over traditional RTL based design

• One distinct advantage of HLS

• Micro-architectural DSE

• Design Space: Set of feasible designs

• Objectives

- Performance (Latency, throughput)

- Area

- Power

5

/*pragma unroll_times = all*/

High-Level Synthesis Flow

• Three main steps in HLS

6

Allocation Scheduling Binding

Main(){
int x, y;
x=a+b;
y= b+c
d = x * f
e =x*a;}

Library
+,-,*,/
Freq

add32s: 1
mul32s: 1

adder

multiplier

a b c

d e

f

High-Level Synthesis Library Generator

• Importance of library generator (LIBGEN) on delay and area

• To assist to successfully schedule operations in a control step

• To provide the area and delay information of FUs from logic synthesis (LS) report

• Notes: FPGA vendors provide pre-characterized libraries for their own FPGA

7

• Overview of LIBGEN

• Step1: Generate RTL code for basic primitives (adders.
decoder....)

• Step 2: Perform logic synthesis and extract area and delay
data

• Step 3: Repeat Step 1 & Step 2 for different bit-widths of the
same primitives

High-Level Synthesis Library Generator Importance

• Example of impact of LIBGEN to scheduling step (Latency)

8

1/freq 12 ns

delay of 5ns

delay of 2 ns

Note: enough FUs are provided

1/freq 12 ns

delay of 10ns

delay of 2 ns

1/freq 12 ns

delay of 20ns

delay of 2 ns

D A B C
X = A+B
E= X*D
F = E*C

F

Clock 1

D A B C

F

Clock 1

Clock 2

D A B C

F

Clock 1

Clock 4

Clock 2

Clock 3

• Limitations/Drawbacks of area estimation of LIBGEN

• How the LS synthesize different FUs is unknown, e.g. different types of adders

• Rough estimation: the area reported by HLS tool is only the sum of areas of all
basic primitive

• For FPGA, estimation is not accurate since the LS tools may merge multiple of
basic primitives into one same LUT

• Also, FPGAs have hard-macros which HLS tool need to
consider

High-Level Synthesis Library Generator

9

𝐴𝑟𝑒𝑎 = 𝐴𝑟𝑒𝑎 𝐹𝑈 + 𝐴𝑟𝑒𝑎 𝑀𝑈𝑋 + 𝐴𝑟𝑒𝑎 𝐷𝐸𝐶 + 𝐴𝑟𝑒𝑎 𝑀𝐼𝑆𝐶

Motivational Example

• DSE Results (Area vs. Latency) of 10-tap FIR filter with HLS and Logic Synthesis

10

True Pareto-optimal

Designs

//fir.c

…

ary [] = {} /*pragma array = ?*/;

Coeff[] = {} /* pragma array = ?*/;

…

/*pragma unroll_times = ?*/

for (i = 0; i<10; i++)

sum+= ary[i] * coeff[i];

Proposed Design Space Explorer

• Design flow overview

• Stage 1: HLS exploration

• Stage 2: Pruning and Logic Synthesis

• A. Pruning: Sorting + Windowing

• B. Learning Model of Classification &
Decision Making

11

Stage 2

Stage 1

Proposed Design Space Explorer

• Stage 1: HLS exploration

• Use any existing heuristic (SA, GA, ACO)

• Objectives: Store all the designs generated
in this stage, to be used at the next stage

12

Global
Synthesis
Options

Local
Synthesis

pragmas

Functional
Units

Number &
Types

Global Frequency 1000MHz, 2000MHz…

Scheduling
mode

Manual, automatic, automatic
pipeline

FU Type adder, multiplexer, subtractor...

Number 0 to 100

Pragmas Array RAM, ROM, EXPAND, LOGIC, REG

Loop unroll_times, folding

Function inline, goto

Area

LatencyL2

Aref1

“Design Point”

Aref2

Aref3

L1 L3

Proposed Design Space Explorer

• Stage 2A: Pruning: Sorting with Windowing

• Algorithm Description

13

Area

LatencyL2

Aref1

“Design Point”

Aref2

Aref3

L1 L3

Area

LatencyL2

Aref1

Aref2

Aref3

L1 L3

Current

Window Size

Acceptable

Threshold

Sorting Vertically windowing Horizontally windowing Stop

(half of the minimum area)

Notes:

1. The window size

determine the size of

training set.

2. Best training case:

3 designs

3. Worst training case:

all designs

Proposed Design Space Explorer

14

• Stage 2B: Learning Model of Classification & Decision Making

• State Transition Diagram of Learning Model
S

T

A

T

E

S1 Reset the score sheet and renew the design with

smallest area of Synth. Rept.

S2 Update the score sheet

S3 Verify the score sheet

S4 Predict the detection to perform logic synthesis

C

O

N

D

I

T

I

O

N

C1 If smallest (Area) design can be found

C2 If smallest (Area) design cannot be found

C3 If score sheet fail to make decision (Verify fail)

C4 If score sheet success to make decision

(Verify done)

C5 If score sheet decide to perform logic synthesis

C6 If score sheet decide not to execute logic synthesis

State1

Reset

State2

Update

State3

Verify

State4

Predict

C1

No Logic Synthesis

C1
C2

C3

C5

C4

C6

State2

Update

State4

Predict

Proposed Design Space Explorer

• Before introducing model, predictors is shown

• Predictor values taken from HLS report

15

Proposed Design Space Explorer

• Stage 2B – Updating Score Sheet State

• RPCL model: Score sheet

16

Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

0 0 0 0 0 0

HLS

Logic Synthesis

Synthesis Report (HLS & LS)State: Reset

Als Var1 Var2 Var3 Var4 Var5 Var6

Dmin 300 100 100 100 100 100 100

Dcur 400 120 120 120 120 80 80

SignArea + + + + + - -

Design Count: 1

Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

0 0 0 0 0 0

State: Updating

Design Count: 2

Als Var1 Var2 Var3 Var4 Var5 Var6

Dmin 300 100 100 100 100 100 100

Dcur 350 80 120 90 120 80 85

SignArea + - + - + - -

Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

-1 1 -1 1 1 1

State: Updating

Design Count: 3

Proposed Design Space Explorer

• Stage 2B – Prediction State with Score Sheet

• Schematic Diagram of Prediction State in
Learning Model

• Step 1: Select variable in terms of score sheet

• Step 2: Calculate the alteration of actual area

• Step 3: Classify the design candidates

• Step 4: Make the decision of performing the
Logic Synthesis

17

Note: the difference between verification state and

Prediction State is the order between performing LS

and using score sheet to do prediction

Experiment Results

• Experiment detail

• Benchmarks from S2CBench (www.s2cbench.org)

• Three methods

• Experiment Setup

18

fir adpcm kasumi snow3G decimation md5C

HLS + LS HLS + LS opt Proposed DSE

LS for each designs LS for only optimal design of HLS Proposed method in this paper

Simulation Computer HLS tool and LS tools Target FPGA

Intel Xeon2 processor running at

2.4GHz with 16G RAM running

Linux Fedora Core 20

NEC CyberWorkBench v.5.5

Xilinx ISE v14.3

Xilinx Virtex 5 FPGA

XCVFS100T

* www.s2cbench.org

Experiment Results

• Criteria for measuring the quality of experiment results

• Criteria for measuring the quantity of experiment results
• Running Time

19

Indicators Definition Evaluation

Average Distance from

Reference Set (ADRS)

How close a Pareto-front is to the reference front The lower ADRS, the better

Pareto Dominance

(Dom)

The ratio between the total number of designs in the

Pareto set being evaluated

The higher Dom, the better

Cardinality (Card) The number of dominating designs found by each

method, indicate the number of design to chose from

The high Card, the better

Experiment Results

• Detailed results (quality)

20

HLS + LS HLS + LS opt Proposed DSE

Bench ADRS Dom Card Run[s] ADRS Dom Card Run[s] ADRS Dom Card Run[s]

fir 0 1 2 5,428 0.2 0.5 1 770 0 1 2 780

adpcm 0 1 5 6,829 0.31 0.6 4 914 0.18 0.8 5 4,458

kasumi 0 1 4 35,028 0.17 0.75 3 1,415 0.06 0.75 4 3,944

snow3G 0 1 3 94,600 0.36 0 2 2,243 0.03 0.67 3 13,234

decimatio

n 0 1 10 469,972 0.15 0.6 9 7,801 0 1 10 39,617

md5c 0 1 12 401,128 0.43 0.75 10 22,900 0.37 0.92 12 41,811

Avg 0 1 6 - 0.27 0.53 4.83 - 0.1 0.86 6 -

Geomean - - - 53,387.93 - - - 2,713.32 - - - 8,184.76

lower

higher

higher

Accurate Method Fast Method

Experiment Results

• Running times comparison (quantity)

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fir adpcm kasumi snow3G decim md5C AVG

Normalized running time (RT)

HLS+LS HLS+LS opt Proposed DSE

Ref. Proposed DSE

HLS + LS 6.5 X faster

HLS + LS opt 3.0 X slower

• Average Running Time Speedup

Acceptable

Experiment Results

• Detail of Pareto-sets (1)

22

fir adpcm kasumi

Experiment Results

• Detail of Pareto-sets (2)

23

snow3G decimation md5c

Conclusion

• In this work, we have presented a HLS DSE for FPGA

1. Firstly, it is motivated that a dedicated explorer for FPGAs is needed in order to
accurately predict if logic synthesis is required or not

2. A method based on RPCL learning model is introduced

3. Results show the proposed method is much better than just using the report from
HLS tools.

4. Also, the proposed DSE can generate the trade-off curve of similar quality to the
ones generated by performing LS for each designs, at a fraction of running time.

24

Thanks for Your Attention

Q & A

25

The work described in this paper was partially supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China (PolyU252000)

References

26

[1] Xilinx. Vivado HLS.

[2] Altera. Altera OpenCL SDK.

[3] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space exploration of datapaths during high-level synthesis,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, pp. 213–229, June 2006.

[4] M. Holzer, B. Knerr, and M. Rupp, “Design space exploration with evolutionary multi-objective optimisation,” in Industrial Embedded Systems, 2007. SIES ’07.

International Symposium on, July 2007, pp. 126–133.

[5] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design space exploration with high-level synthesis,” in Proceedings of the 50thAnnual Design Automation

Conference, ser. DAC ’13. New York, NY, USA: ACM, 2013, pp. 50:1–50:7.

[6] B. C. Schafer, “Probabilistic multiknob high-level synthesis design space exploration acceleration,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 35, no. 3, pp. 394–406, March 2016.

[7] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design space exploration of multiple loops on fpgas using high level synthesis,” in Computer Design

(ICCD), 2014 32nd IEEE International Conference on, Oct 2014, pp. 456–463.

[8] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “Fpga pipeline synthesis design exploration using module selection and resource sharing,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 254–265, Feb 2007.

[9] B. Carrion Schafer and K. Wakabayashi, “Machine learning predictive modelling high-level synthesis design space exploration,” IET computers & digital techniques, vol.

6, no. 3, pp. 153–159, 2012.

[10] M. Kuhn and K. Johnson, Applied predictive modeling. Springer, 2013.

[11] L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning for clustering analysis, rbf net, and curve detection,” IEEE Transactions on Neural Networks, vol.

4, no. 4, pp. 636–649, Jul 1993.

[12] B. Schafer and A. Mahapatra, “S2cbench: Synthesizable systemc benchmark suite for high-level synthesis,” Embedded Systems Letters, IEEE, vol. 6, no. 3, pp. 53–56,

Sept 2014.

[13] NEC CyberWorkBench. (2015). [Online]. Available: www.cyberworkbench.com

[14] Xilinx: All Programmable. (2015). [Online]. Available: http://www.xilinx.com/products/design-tools/ise-design-suite.html

[15] C. M. Fonseca, J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial onthe performance assessment of stochastic multiobjective optimizers,” in Third International

Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), vol. 216, 2005, p. 240.

Biography of presenter

27

Dong Liu received the B. Eng (Hons) in Electronic Engineering with First Class from the Hong

Kong Polytechnic University, Hong Kong, in 2014. He is currently perusing the Ph. D degree in

the Department of Electronic and Information Engineering, The Hong Kong Polytechnic

University, Hong Kong.

His research interests now include, modeling of circuit and system, complex network application,

Programmable hardware implementation

