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Objectives

• In this paper, the main objectives can be summarized as follows：

• To investigate the quality of the exploration results when using the results 
(particularly area) reported after HLS to guide the explorer in finding the true 
Pareto-optimal design (after logic synthesis).

• To propose a dedicated DSE for FPGAs based on a pruning with adaptive 
windowing method using a Rival Penalized Competitive Learning (RPCL) model 
to extract the design candidates to further (logic) synthesized.

3



Introduction: HLS Overview

• High Level Synthesis
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Introduction: HLS Advantages

• Many advantages over traditional RTL based design

• One distinct advantage of HLS

• Micro-architectural DSE

• Design Space: Set of feasible designs

• Objectives

- Performance (Latency, throughput)

- Area

- Power
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/*pragma unroll_times = all*/



High-Level Synthesis Flow

• Three main steps in HLS
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High-Level Synthesis Library Generator

• Importance of library generator (LIBGEN) on delay and area

• To assist to successfully schedule operations in a control step

• To provide the area and delay information of FUs from logic synthesis (LS) report

• Notes: FPGA vendors provide pre-characterized libraries for their own FPGA
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• Overview of LIBGEN

• Step1: Generate RTL code for basic primitives (adders. 
decoder....)

• Step 2: Perform logic synthesis and extract area and delay 
data

• Step 3: Repeat Step 1 & Step 2 for different bit-widths of the 
same primitives



High-Level Synthesis Library Generator Importance

• Example of impact of LIBGEN to scheduling step (Latency)
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• Limitations/Drawbacks of area estimation of LIBGEN

• How the LS synthesize different FUs is unknown, e.g. different types of adders 

• Rough estimation: the area reported by HLS tool is only the sum of areas of all 
basic primitive 

• For FPGA, estimation is not accurate since the LS tools may merge multiple of 
basic primitives into one same LUT

• Also, FPGAs have hard-macros which HLS tool need to                               
consider

High-Level Synthesis Library Generator
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𝐴𝑟𝑒𝑎 = 𝐴𝑟𝑒𝑎 𝐹𝑈 + 𝐴𝑟𝑒𝑎 𝑀𝑈𝑋 + 𝐴𝑟𝑒𝑎 𝐷𝐸𝐶 + 𝐴𝑟𝑒𝑎 𝑀𝐼𝑆𝐶



Motivational Example

• DSE Results (Area vs. Latency) of 10-tap FIR filter with HLS and Logic Synthesis
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True Pareto-optimal

Designs

//fir.c

…

ary [] = {} /*pragma array = ?*/;

Coeff[] = {} /* pragma array = ?*/;

… 

/*pragma unroll_times = ?*/

for (i = 0; i<10; i++)

sum+= ary[i] * coeff[i];



Proposed Design Space Explorer

• Design flow overview

• Stage 1: HLS exploration

• Stage 2: Pruning and Logic Synthesis

• A. Pruning: Sorting + Windowing

• B. Learning Model of Classification & 
Decision Making
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Proposed Design Space Explorer

• Stage 1: HLS exploration

• Use any existing heuristic  (SA, GA, ACO)

• Objectives: Store all the designs generated 
in this stage, to be used at the next stage
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Global 
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Options

Local 
Synthesis

pragmas

Functional 
Units 

Number & 
Types

Global Frequency 1000MHz, 2000MHz…

Scheduling
mode

Manual, automatic, automatic 
pipeline

FU Type adder, multiplexer, subtractor...

Number 0 to 100

Pragmas Array RAM, ROM, EXPAND, LOGIC, REG

Loop unroll_times, folding

Function inline, goto

Area

LatencyL2

Aref1

“Design Point”

Aref2

Aref3

L1 L3



Proposed Design Space Explorer

• Stage 2A: Pruning: Sorting with Windowing

• Algorithm Description 
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Area

LatencyL2

Aref1

“Design Point”

Aref2

Aref3

L1 L3

Area

LatencyL2

Aref1

Aref2

Aref3

L1 L3

Current

Window Size

Acceptable 

Threshold

Sorting Vertically windowing Horizontally windowing Stop

(half of the minimum area)

Notes:

1. The window size 

determine the size of 

training set.

2. Best training case:      

3 designs

3. Worst training case:    

all designs



Proposed Design Space Explorer
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• Stage 2B: Learning Model of Classification & Decision Making

• State Transition Diagram of Learning Model
S

T

A
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smallest area of Synth. Rept.

S2 Update the score sheet

S3 Verify the score sheet 
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C5 If score sheet decide to perform logic synthesis

C6 If score sheet decide not to execute logic synthesis
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Proposed Design Space Explorer

• Before introducing model, predictors is shown

• Predictor values taken from HLS report
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Proposed Design Space Explorer

• Stage 2B – Updating Score Sheet State

• RPCL model: Score sheet
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Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

0 0 0 0 0 0

HLS  

Logic Synthesis  

Synthesis Report (HLS & LS)State: Reset

Als Var1 Var2 Var3 Var4 Var5 Var6

Dmin 300 100 100 100 100 100 100

Dcur 400 120 120 120 120 80 80

SignArea + + + + + - -

Design Count: 1

Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

0 0 0 0 0 0

State: Updating

Design Count: 2

Als Var1 Var2 Var3 Var4 Var5 Var6

Dmin 300 100 100 100 100 100 100

Dcur 350 80 120 90 120 80 85

SignArea + - + - + - -

Score(1) Score(2) Score(3) Score(4) Score(5) Score(6)

-1 1 -1 1 1 1

State: Updating

Design Count: 3



Proposed Design Space Explorer

• Stage 2B – Prediction State with Score Sheet

• Schematic Diagram of Prediction State in 
Learning Model

• Step 1: Select variable in terms of score sheet

• Step 2: Calculate the alteration of actual area

• Step 3: Classify the design candidates

• Step 4: Make the decision of performing the    
Logic Synthesis
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Note: the difference between verification state and 

Prediction State is the order between performing LS 

and using score sheet to do prediction



Experiment Results

• Experiment detail

• Benchmarks from S2CBench (www.s2cbench.org)

• Three methods

• Experiment Setup
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fir adpcm kasumi snow3G decimation md5C

HLS + LS HLS + LS opt Proposed DSE

LS for each designs LS for only optimal design of HLS Proposed method in this paper

Simulation Computer HLS tool and LS tools Target FPGA

Intel Xeon2 processor running at 

2.4GHz with 16G RAM running 

Linux Fedora Core 20

NEC CyberWorkBench v.5.5 

Xilinx ISE v14.3

Xilinx Virtex 5 FPGA 

XCVFS100T

* www.s2cbench.org



Experiment Results

• Criteria for measuring the quality of experiment results

• Criteria for measuring the quantity of experiment results
• Running Time
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Indicators Definition Evaluation

Average Distance from 

Reference Set (ADRS)

How close a Pareto-front is to the reference front The lower ADRS, the better

Pareto Dominance 

(Dom)

The ratio between the total number of designs in the 

Pareto set being evaluated

The higher Dom, the better

Cardinality (Card) The number of dominating designs found by each 

method, indicate the number of design to chose from

The high Card, the better



Experiment Results

• Detailed results (quality)
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HLS + LS HLS + LS opt Proposed DSE

Bench ADRS Dom Card Run[s] ADRS Dom Card Run[s] ADRS Dom Card Run[s]

fir 0 1 2 5,428 0.2 0.5 1 770 0 1 2 780

adpcm 0 1 5 6,829 0.31 0.6 4 914 0.18 0.8 5 4,458

kasumi 0 1 4 35,028 0.17 0.75 3 1,415 0.06 0.75 4 3,944

snow3G 0 1 3 94,600 0.36 0 2 2,243 0.03 0.67 3 13,234

decimatio

n 0 1 10 469,972 0.15 0.6 9 7,801 0 1 10 39,617

md5c 0 1 12 401,128 0.43 0.75 10 22,900 0.37 0.92 12 41,811

Avg 0 1 6 - 0.27 0.53 4.83 - 0.1 0.86 6 -

Geomean - - - 53,387.93 - - - 2,713.32 - - - 8,184.76

lower

higher

higher

Accurate Method Fast Method



Experiment Results

• Running times comparison (quantity)
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Normalized running time (RT)
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Ref. Proposed DSE 

HLS + LS 6.5 X faster

HLS + LS opt 3.0 X slower

• Average Running Time Speedup

Acceptable



Experiment Results

• Detail of Pareto-sets (1) 
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Experiment Results

• Detail of Pareto-sets (2) 
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Conclusion

• In this work, we have presented a HLS DSE for FPGA

1. Firstly, it is motivated that a dedicated explorer for FPGAs is needed in order to 
accurately predict if logic synthesis is required or not

2. A method based on RPCL learning model is introduced

3. Results show the proposed method is much better than just using the report from 
HLS tools.

4. Also, the proposed DSE can generate the trade-off curve of similar quality to the 
ones generated by performing LS for each designs, at a fraction of running time.
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