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What this talk is about…

Recent work: Software-level, in-system debugging of HLS circuits

How do you measure the effectiveness of a debug tool?

This work: Quantifying observability into an HLS circuit

Use the metric to explore debugging techniques and trade-offs
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High-Level Synthesis

High-Level 
Synthesis 

(HLS)

Software Hardware
(FPGA)

Software designers need more than a compiler

• They need tools for testing, debugging, optimization….

My PhD work: Debugging HLS circuits

Why this is challenging:

1. Circuit looks nothing like the original software

2. Debugging hardware is difficult – limited observability into chip 
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Bugs in HLS systems

main() {
int i;

}

HLS Generated
RTL

HLS

FPGA
HLS Generated

Hardware

Other 
Hardware

Other 
Hardware

I/O Devices

How do you observe 
these bugs?

Kernel-level bugs
• Self-contained
• Easy to reproduce

Debug C code on 
workstation (gdb).

RTL Verification
• Verify RTL correctness
• Catch tool usage errors

Run C/RTL co-simulation 
on workstation.

System-Level Bugs
• Bugs in interfaces
• Dependent on I/O traffic
• Hard to reproduce, or 

require long run times

Debug on FPGA

(Requires observing 
internals of FPGA)
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Can We Use Hardware Debug Tools?

Embedded Logic Analyzer 

(SignalTap/Chipscope):

Your 
RTL 

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run

Designer is forced to debug using the RTL, which is nothing like the ‘C’ code
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Our Approach

1. A software-like debugger running on a workstation

• Single-stepping, breakpoints, inspect variables

2. Interacting with the circuit on the FPGA

• Capture system-level bugs in the real operating environment
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Key: If we want to capture system bugs, the circuit needs to execute at normal speed (MHz)

• Makes ‘interactive debugging’ impossible

Solution: Record and Replay

• Record circuit execution on-chip, retrieve, debug using the recorded data

HLS

On-Chip Memory

Limited on-chip memory: Can only observe a small portion of entire exectuion

1. Execute 
and record

2. Stop and 
retrieve

3. Debug using the recorded data
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Embedded Logic Analyzers

• Example: Chipscope/Signaltap

• Record (trace) signals into on-chip memory 

• Trace Buffers
• Memory configured as a cyclic buffer
• Each cycle, store samples of all signals of interest

Cycle i

Cycle i+1

Cycle i+2

Cycle i+3

Cycle i+4

Signals of interest
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r1r2r3r4r5r6r7r8r9

r1r2r3r4r5r6r7r8r9

Datapath

r1r2r3r4r5r6r7r8r9
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r1r2r3r4r5r6r7r8r9
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Embedded Logic Analyzer Our Architecture

~40-200X 
more 

memory 
efficient

Dynamically change which signals are recorded each cycle

• HLS schedule is used to only record variable updates

• Longer execution trace  Find bugs faster

Active Registers

r2

r3r6r7

r8r9

r1

r10

r11

Trace Scheduler

r1r2r3r4r5r6r7r8r9

Datapath

Current 
State

Leveraging the HLS Information

State

S1

S2
S5

S6
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HLS Observability

Usually not possible to provide “complete observability”

• Limited on-chip memory

• What data should be given to the user? What should be ignored?

Why have an observability metric?

• Compare and contrast debug techniques; understand relative strengths

• Toward debug techniques tailored to the design/bug

Observability metrics have been proposed for RTL circuits

• Issue: ‘RTL’ observability not meaningful in the software domain

Need an observability metric for HLS circuits, based upon the original software code.
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Observability Metric

What does our metric measure?

• As a user steps through a program, how often are the values of variable accesses available?

Why this approach?  

• Recent debug work: software-like debug experience

We define Observability as:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

What percentage of variable accesses have 
recorded values available to the user?

How many cycles is the data available for?
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Observability Metric

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴 =
σ𝑖∈𝑣𝑎𝑟 𝑓𝑖 ⋅ 𝑣𝑖

σ𝑖∈𝑣𝑎𝑟 𝑓𝑖 ⋅ 𝑎𝑖

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑡𝑏 ⋅ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑖𝑧𝑒 (kb)

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 𝐴 ⋅ 𝑒𝑡𝑏

𝑣𝑖: Variable accesses with known value
𝑎𝑖: Total number of variable accesses
𝑓𝑖: Variable favorability coefficient

𝑒𝑡𝑏: Memory efficiency (cycles captured per kB of 
memory)
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Observability provided by an Embedded Logic Analyzer

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 𝐴 ⋅ 𝑒𝑡𝑏
• 𝐴 = 100% 

• 𝑒𝑡𝑏 = 
1𝑘

# 𝐵𝑖𝑡𝑠 𝑇𝑟𝑎𝑐𝑒𝑑

Methodology:  

• CHStone benchmarks, LegUp 4.0

• Record ALL ‘C’ variables

Result: 

• 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 100% ⋅ 0.5 𝑐𝑦𝑐𝑙𝑒𝑠/𝑘𝑏

Cycle i
Cycle i+1
Cycle i+2
Cycle i+3
Cycle i+4

Signals of interest
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Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x
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Observability of Dynamic Tracing Scheme

Our recent work:

• Use HLS schedule to only record variable updates

If we record all variable updates, is Availability 100%?

Trace Scheduler
Current 
State

r1r2r3r4r5r6r7r8r9

Datapath

Active Registers

r2r3
r6r7r8r9

State
r1

r2r3

S1

S2
S5

S2
S6 r10
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Issue with Only Recording Updates

Variables updates may occur outside of captured trace

• During debug, these variable values are not available to the user

More likely to occur if:

• Long gaps of time from update to access

• Trace buffers are small

𝑨 = ൗ𝟕 𝟗 = 𝟕𝟖%
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Availability (%) – Record Updates Only

10kb Trace 
Memory
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Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x

2. Record “Updates” 88% ⋅ 22.0cyl/kb 38x
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Which variables cause this issue?

Local/Scalar Variables:

• Shorter lifespan, often accessed soon after 
updating

• Typically mapped to registers in the hardware

Global/Vector Variables:

• Longer lifespan, may be accessed long after being 
initialized/updated

• Typically mapped to memories in the hardware

#define N 100

int matrix_multiply(int * fifo_in) {

int i, j, k, sum;

int A[N][N], B[N][N], C[N][N];

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

A[i][j] = *fifo_in;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

B[i][j] = *fifo_in;;

for (i = 0; c < m; c++) {

for (j = 0; d < q; d++) {

sum = 0;

for (k = 0; k < p; k++) {

sum += A[i][k]*B[k][j];

}

C[i][j] = sum;

}

}

return 0;

}
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Availability (%) – Record Updates Only
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Availability (%) – Record Updates Only

Variables in Registers Variables in Memory

Recording “Updates Only” works well for variables in registers, but has issues for variables in memory 
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Availability (%) – Record Updates + Memory Reads

Record when variables are read as well as written

• First, consider memory reads only

• Provides better availability (at a cost of duration)

Record “Updates + Mem Reads”

Record “Updates Only”

10kb Trace 
Memory



2016-09-15

12

23

Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x

2. Record “Updates” 88% ⋅ 22.0cyl/kb 38x

3. Record “Updates + Mem Reads” 98% ⋅ 12.0cyl/kb 24x

4. Record “Updates + Reads” 100% ⋅ 7.7cyl/kb 14x
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Observing a Subset of Variables

What happens to observability if we only observe a subset of variables?  10%? 90%?

Selecting RTL signals for an Embedded Logic Analyzer  Predictable effect on observability

Selecting ‘C’ variables to observe  non-uniform effect on observability:

• Bit-width minimization

• 1 Variable in C code Many signal in hardware:

• LLVM SSA form creates new register/signal for each assignment

• Many Variables in C code  1 Signal in hardware:

• Function parameters

• In-lining
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Variable Selection Experiment

Test different variable selection methods and measure availability and duration

Methodology:

• Sweep % of signal traced, from 10% to 100%

• Record “Updates Only”

Variable selection methods:

1. Random: Random selection of variables

2. R+W Static: Variables that are read or written most often (Static analysis)

3. R+W Dynamic: Variables that are read or written most often (Dynamic analysis) 

4. R/W: Select variables with highest read/write ratio.

5. Bit Width: Select variables with smallest bit width 
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Variable Selection Results

Availability Duration
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Impact of Results

Different signal-tracing techniques provide observability trade-offs

• Record updates only  Long duration, some variable values unavailable to user

Selecting variables for observation  non-uniform cost

Can we tailor HLS debugging methods to:

• Circuit characteristics?

• Type of bug/issue?

Vision: Automatic analysis for optimal debugging technique
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Summary

• HLS users require a full eco-system of tools, including effective debuggers

• Metric for in-system observability of an HLS circuit

• Debugging techniques provided varied observability characteristics

• This is an important step to:

• Developing effective HLS debuggers

• Understanding what techniques are best suited for certain debug problems 


