
2016-09-15

1

1

Quantifying Observability
for In-System Debug of
High-Level Synthesis Circuits

Jeffrey Goeders
Steve Wilton

2

What this talk is about…

Recent work: Software-level, in-system debugging of HLS circuits

How do you measure the effectiveness of a debug tool?

This work: Quantifying observability into an HLS circuit

Use the metric to explore debugging techniques and trade-offs

2016-09-15

2

3

High-Level Synthesis

High-Level
Synthesis

(HLS)

Software Hardware
(FPGA)

Software designers need more than a compiler

• They need tools for testing, debugging, optimization….

My PhD work: Debugging HLS circuits

Why this is challenging:

1. Circuit looks nothing like the original software

2. Debugging hardware is difficult – limited observability into chip

4

H
ar

d
w

ar
e

Bugs in HLS systems

main() {
int i;

}

HLS Generated
RTL

HLS

FPGA
HLS Generated

Hardware

Other
Hardware

Other
Hardware

I/O Devices

How do you observe
these bugs?

Kernel-level bugs
• Self-contained
• Easy to reproduce

Debug C code on
workstation (gdb).

RTL Verification
• Verify RTL correctness
• Catch tool usage errors

Run C/RTL co-simulation
on workstation.

System-Level Bugs
• Bugs in interfaces
• Dependent on I/O traffic
• Hard to reproduce, or

require long run times

Debug on FPGA

(Requires observing
internals of FPGA)

So
ft

w
ar

e
Si

m
u

la
ti

o
n

2016-09-15

3

5

Can We Use Hardware Debug Tools?

Embedded Logic Analyzer

(SignalTap/Chipscope):

Your
RTL

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run

Designer is forced to debug using the RTL, which is nothing like the ‘C’ code

6

Our Approach

1. A software-like debugger running on a workstation

• Single-stepping, breakpoints, inspect variables

2. Interacting with the circuit on the FPGA

• Capture system-level bugs in the real operating environment

2016-09-15

4

7

Key: If we want to capture system bugs, the circuit needs to execute at normal speed (MHz)

• Makes ‘interactive debugging’ impossible

Solution: Record and Replay

• Record circuit execution on-chip, retrieve, debug using the recorded data

HLS

On-Chip Memory

Limited on-chip memory: Can only observe a small portion of entire exectuion

1. Execute
and record

2. Stop and
retrieve

3. Debug using the recorded data

8

Embedded Logic Analyzers

• Example: Chipscope/Signaltap

• Record (trace) signals into on-chip memory

• Trace Buffers
• Memory configured as a cyclic buffer
• Each cycle, store samples of all signals of interest

Cycle i

Cycle i+1

Cycle i+2

Cycle i+3

Cycle i+4

Signals of interest

2016-09-15

5

9

r1r2r3r4r5r6r7r8r9

r1r2r3r4r5r6r7r8r9

Datapath

r1r2r3r4r5r6r7r8r9

r1r2r3r4r5r6r7r8r9

r1r2r3r4r5r6r7r8r9
r1r2r3r4r5r6r7r8r9

Embedded Logic Analyzer Our Architecture

~40-200X
more

memory
efficient

Dynamically change which signals are recorded each cycle

• HLS schedule is used to only record variable updates

• Longer execution trace  Find bugs faster

Active Registers

r2

r3r6r7

r8r9

r1

r10

r11

Trace Scheduler

r1r2r3r4r5r6r7r8r9

Datapath

Current
State

Leveraging the HLS Information

State

S1

S2
S5

S6

10

HLS Observability

Usually not possible to provide “complete observability”

• Limited on-chip memory

• What data should be given to the user? What should be ignored?

Why have an observability metric?

• Compare and contrast debug techniques; understand relative strengths

• Toward debug techniques tailored to the design/bug

Observability metrics have been proposed for RTL circuits

• Issue: ‘RTL’ observability not meaningful in the software domain

Need an observability metric for HLS circuits, based upon the original software code.

2016-09-15

6

11

Observability Metric

What does our metric measure?

• As a user steps through a program, how often are the values of variable accesses available?

Why this approach?

• Recent debug work: software-like debug experience

We define Observability as:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

What percentage of variable accesses have
recorded values available to the user?

How many cycles is the data available for?

12

Observability Metric

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴 =
σ𝑖∈𝑣𝑎𝑟 𝑓𝑖 ⋅ 𝑣𝑖

σ𝑖∈𝑣𝑎𝑟 𝑓𝑖 ⋅ 𝑎𝑖

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑡𝑏 ⋅ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑖𝑧𝑒 (kb)

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 𝐴 ⋅ 𝑒𝑡𝑏

𝑣𝑖: Variable accesses with known value
𝑎𝑖: Total number of variable accesses
𝑓𝑖: Variable favorability coefficient

𝑒𝑡𝑏: Memory efficiency (cycles captured per kB of
memory)

2016-09-15

7

13

Observability provided by an Embedded Logic Analyzer

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 𝐴 ⋅ 𝑒𝑡𝑏
• 𝐴 = 100%

• 𝑒𝑡𝑏 =
1𝑘

𝐵𝑖𝑡𝑠 𝑇𝑟𝑎𝑐𝑒𝑑

Methodology:

• CHStone benchmarks, LegUp 4.0

• Record ALL ‘C’ variables

Result:

• 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑘𝑏 = 100% ⋅ 0.5 𝑐𝑦𝑐𝑙𝑒𝑠/𝑘𝑏

Cycle i
Cycle i+1
Cycle i+2
Cycle i+3
Cycle i+4

Signals of interest

14

Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Availability

0.0

5.0

10.0

15.0

20.0

25.0

C
yc

le
s/

K
b

Duration

2016-09-15

8

15

Observability of Dynamic Tracing Scheme

Our recent work:

• Use HLS schedule to only record variable updates

If we record all variable updates, is Availability 100%?

Trace Scheduler
Current
State

r1r2r3r4r5r6r7r8r9

Datapath

Active Registers

r2r3
r6r7r8r9

State
r1

r2r3

S1

S2
S5

S2
S6 r10

16

Issue with Only Recording Updates

Variables updates may occur outside of captured trace

• During debug, these variable values are not available to the user

More likely to occur if:

• Long gaps of time from update to access

• Trace buffers are small

𝑨 = ൗ𝟕 𝟗 = 𝟕𝟖%

2016-09-15

9

17

Availability (%) – Record Updates Only

10kb Trace
Memory

18

Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x

2. Record “Updates” 88% ⋅ 22.0cyl/kb 38x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Availability

0.0

5.0

10.0

15.0

20.0

25.0

C
yc

le
s/

K
b

Duration

2016-09-15

10

19

Which variables cause this issue?

Local/Scalar Variables:

• Shorter lifespan, often accessed soon after
updating

• Typically mapped to registers in the hardware

Global/Vector Variables:

• Longer lifespan, may be accessed long after being
initialized/updated

• Typically mapped to memories in the hardware

#define N 100

int matrix_multiply(int * fifo_in) {

int i, j, k, sum;

int A[N][N], B[N][N], C[N][N];

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

A[i][j] = *fifo_in;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

B[i][j] = *fifo_in;;

for (i = 0; c < m; c++) {

for (j = 0; d < q; d++) {

sum = 0;

for (k = 0; k < p; k++) {

sum += A[i][k]*B[k][j];

}

C[i][j] = sum;

}

}

return 0;

}

20

Availability (%) – Record Updates Only

2016-09-15

11

21

Availability (%) – Record Updates Only

Variables in Registers Variables in Memory

Recording “Updates Only” works well for variables in registers, but has issues for variables in memory

22

Availability (%) – Record Updates + Memory Reads

Record when variables are read as well as written

• First, consider memory reads only

• Provides better availability (at a cost of duration)

Record “Updates + Mem Reads”

Record “Updates Only”

10kb Trace
Memory

2016-09-15

12

23

Observability Results

Availability Duration vs. ELA

1. Embedded Logic Analyzer 100% ⋅ 0.5cyl/kb 1x

2. Record “Updates” 88% ⋅ 22.0cyl/kb 38x

3. Record “Updates + Mem Reads” 98% ⋅ 12.0cyl/kb 24x

4. Record “Updates + Reads” 100% ⋅ 7.7cyl/kb 14x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Availability

0.0

5.0

10.0

15.0

20.0

25.0

C
yc

le
s/

K
b

Duration

24

Observing a Subset of Variables

What happens to observability if we only observe a subset of variables? 10%? 90%?

Selecting RTL signals for an Embedded Logic Analyzer  Predictable effect on observability

Selecting ‘C’ variables to observe  non-uniform effect on observability:

• Bit-width minimization

• 1 Variable in C code Many signal in hardware:

• LLVM SSA form creates new register/signal for each assignment

• Many Variables in C code  1 Signal in hardware:

• Function parameters

• In-lining

2016-09-15

13

25

Variable Selection Experiment

Test different variable selection methods and measure availability and duration

Methodology:

• Sweep % of signal traced, from 10% to 100%

• Record “Updates Only”

Variable selection methods:

1. Random: Random selection of variables

2. R+W Static: Variables that are read or written most often (Static analysis)

3. R+W Dynamic: Variables that are read or written most often (Dynamic analysis)

4. R/W: Select variables with highest read/write ratio.

5. Bit Width: Select variables with smallest bit width

26

Variable Selection Results

Availability Duration

2016-09-15

14

27

Impact of Results

Different signal-tracing techniques provide observability trade-offs

• Record updates only  Long duration, some variable values unavailable to user

Selecting variables for observation  non-uniform cost

Can we tailor HLS debugging methods to:

• Circuit characteristics?

• Type of bug/issue?

Vision: Automatic analysis for optimal debugging technique

28

Summary

• HLS users require a full eco-system of tools, including effective debuggers

• Metric for in-system observability of an HLS circuit

• Debugging techniques provided varied observability characteristics

• This is an important step to:

• Developing effective HLS debuggers

• Understanding what techniques are best suited for certain debug problems

