2016-09-15

Quantifying Observability
for In-System Debug of

High-Level Synthesis Circuits o il
UBC

W
/AVO[S RYA\

Jeffrey Goeders
Steve Wilton

What this talk is about...

Recent work: Software-level, in-system debugging of HLS circuits

17 int quickSort{int %ar, int elements) {
18

int piv, beg[100], end[100);
inti, L, R;

How do you measure the effectiveness of a debug tool?

This work: Quantifying observability into an HLS circuit

Use the metric to explore debugging techniques and trade-offs

High-Level Synthesis

for (int j = 0: 3 < N-i-1
if (arr[i] > arz[i+1]) {
int swep = arz[i];
are[j] = arr[3+11;
arr[j+l] = awap;

Software

0id bubblesort (int * arr) [
for (int i=10; i <N-1: i) |
e A

e

Software designers need more than a compiler

* They need tools for testing, debugging, optimization....

My PhD work: Debugging HLS circuits

Why this is challenging:

1. Circuit looks nothing like the original software
2. Debugging hardware is difficult — limited observability into chip

Bugs in HLS systems

Kernel-level bugs

Hardware
(FPGA)

Debug C code on

(9]
* Self-contained workstation (gdb). §
* Easy to reproduce £
3
L his o
! RTL Verification Run C/RTL co-simulation s
* Verify RTL i 2
S — Verify RTL correctness on workstation. =
RTL * Catch tool usage errors >
£
=
/O Devices System-Level Bugs Debug on FPGA
e Bugs in interfaces
HLS Generated * Dependent on I/0O traffic (Requires observing)
Hardware * Hard to reproduce, or internals of FPGA) g
require long run times 'g
Other Other T

Hardware

Hardware

How do you observe
these bugs?

2016-09-15

2016-09-15

Can We Use Hardware Debug Tools?

Embedded Logic Analyzer
(SignalTap/Chipscope):

Your Debug Tool:
RTL - Chooses signals to trace
Circuit - Debug circuitry added
Run
Designer is forced to debug using the RTL, which is nothing like the ‘C’ code [5]

Our Approach

1. A software-like debugger running on a workstation
* Single-stepping, breakpoints, inspect variables

2. Interacting with the circuit on the FPGA

* Capture system-level bugs in the real operating environment

Execution Mode FPGA Replay :

82 T T

Fanction: main Stat

HERENBERONNY

HUSUBYRRRUNESY

2016-09-15

Key: If we want to capture system bugs, the circuit needs to execute at normal speed (MHz)

* Makes ‘interactive debugging’ impossible

Solution: Record and Replay

= Record circuit execution on-chip, retrieve, debug using the recorded data

2. Stoy
retriey
1. Execute\ “

and record - 5:1‘
\ On-Chip “"emf’V 3. Debug using the recorded data

Limited on-chip memory: Can only observe a small portion of entire exectuion

Embedded Logic Analyzers

* Example: Chipscope/Signaltap
* Record (trace) signals into on-chip memory

* Trace Buffers
* Memory configured as a cyclic buffer
* Each cycle, store samples of all signals of interest

Signals of interest

Cycle i

Cycle i+1

Cycle i+2
Cycle i+3 [.]

Cycle i+4

2016-09-15

Leveraging the HLS Information

Embedded Logic Analyzer Our Architecture

Datapath Datapath
I I, r r r r r r
fo Ifg |17 T6 |Ts |fa |Fs |F2 |1 # ﬂ !
+ 3 111 ~40-200X Curren Trace Scheduler
fo (fg [Tz (Fg (s (Mg 3 KN more State
o i Vgw My Vg v gy Ogn Faw o 1y memory State| Active Registers
oo fs T To Ts fa f3 T N efficient s1 PN
g | Fg ! Iyl Ig! Ig! Fp! 3! Il Iy s2 ' r.' r
i | g 5 gl [B i [l 6 7 6% 3
S5 r.10l r9l I
S6 ‘ 1

Dynamically change which signals are recorded each cycle

* HLS schedule is used to only record variable updates [9]
* Longer execution trace - Find bugs faster

HLS Observability

Usually not possible to provide “complete observability”
* Limited on-chip memory

* What data should be given to the user? What should be ignored?

Why have an observability metric?

* Compare and contrast debug techniques; understand relative strengths
* Toward debug techniques tailored to the design/bug

Observability metrics have been proposed for RTL circuits

* |ssue: ‘RTL observability not meaningful in the software domain

Need an observability metric for HLS circuits, based upon the original software code. [10]

2016-09-15

Observability Metric

What does our metric measure?
* As a user steps through a program, how often are the values of variable accesses available?

Why this approach?

* Recent debug work: software-like debug experience

We define Observability as:

Observability = Availability - Duration

L} How many cycles is the data available for?

What percentage of variable accesses have [11]
recorded values available to the user?

Observability Metric

Observability = Availability - Duration

Y icoar fi - Vi v;: Variable accesses with known value
Availability (A) = a;: Total number of variable accesses
ievar fi* @i fi+ Variable favorability coefficient
Duration = ey, - Memory Size (kb) e:p»: Memory efficiency (cycles captured per kB of
memory)
Observability per kb = A - ey ()

2016-09-15

Observability provided by an Embedded Logic Analyzer

Observability per kb = A - ey, Sig%l of interest

* A=100% .
i Cyclei
TS R rp—— Cycle i+1
Bits Traced Cycle i+2
Cycle i+3
Cycle i+4
Methodology:
* CHStone benchmarks, LegUp 4.0
* Record ALL ‘C’ variables
Result:
* Observability per kb = 100% - 0.5 cycles/kb
Observability Results
Availability Duration
100% 25.0
90%
80% 20.0
70%
60% g 15.0
50% g
40% 5100
30%
20% 5.0
10%
0% 0.0 —
Availability Duration vs. ELA
1. Embedded Logic Analyzer 100% - 0.5cyl/kb 1x

2016-09-15

Observability of Dynamic Tracing Scheme

Our recent work:

* Use HLS schedule to only record variable updates

Datapath
l

Trace Scheduler

If we record all variable updates, is Availability 100%?

State Active Registers
s [T T
S2 L i
S5 | fg i fgi ;1 T
S6 P Mo
S2 t 3 N
Issue with Only Recording Updates
€———Captured Tracem—)) .
Q
IIPDI 1.1 I1?0I 1 1 IZPOI | | IZ?OI | | Isqol £_t(c;‘es,
=
PR — el R
g B..W i 'B. w Write
= C vy B 5 L 8
-------------------- ; -—- Read
Variables updates may occur outside of captured trace A= 7/ =78%
* During debug, these variable values are not available to the user 9
More likely to occur if: [16 J

* Long gaps of time from update to access
* Trace buffers are small

2016-09-15

Availability (%) — Record Updates Only

1.1
1.0F
0.9}
0.8}
0.7}
Frd
= 0.6f
o
ki
T 05
< adpcm —_— gsm
0.4f — aes — jpeg
0.3 = blowfish — Mips
dfadd === motion
0.2 - dfdiv = sha
o1f dfmul = Average| |
’ = dfsin
— 10kb Trace . n N ‘ [&7]
0.0% T 3 3 7 5 6
Memory 10 10 10 10 10 10 10
Trace Buffer Depth
Observability Results
Availability Duration
100% 25.0
90%
80% 20.0
70%
60% g 15.0
50% g
40% 5100
30%
20% 5.0
10%
0% 0.0 —
Availability Duration vs. ELA
1. Embedded Logic Analyzer 100% - 0.5cyl/kb 1x
2. Record “Updates” 88% - 22.0cyl/kb 38x

2016-09-15

Which variables cause this issue?

#define N 100

int matrix multiply(int * fifo_in) { Local/Scalar Variables:

int i, j, k, sum; > * Shorter lifespan, often accessed soon after
int A[N][N], B[N][N], C[N][N]; .
updating

for (i = 0; i < N; it++)
for (j = 0; j < N; j++)
A[i][j] = *fifo_in;

* Typically mapped to registers in the hardware

for (i = 0; i < N; it++)
for (j = 0; j < N; j++)
B[i] [j] = *fifo_in;;

Global/Vector Variables:

* Longer lifespan, may be accessed long after being

for (i = 0; ¢ <m; c++) { initialized/updated
for (j = 0; d < q; d++) {
sum = 0;
for (k = 0; k < p; k++) {
sum += A[i] [k]*B[k] [J]/
}
C[i][j] = sum;
}
}

return 0;

}

* Typically mapped to memories in the hardware

Availability (%) — Record Updates Only

1.1 . : - - ‘
1.0
0.9 |
0.8 1
0.7 |
z
Z 06 1
e}
=
T 0.5 1
< adpcm — gsm
0.4 - aes ipeg
0.3 == blowfish — Mips
dfadd === motion
0.2 - dfdiv = sha]
0.1k dfmul = Average||
o — dfsin [20 J
10° 10 10° 10° 10* 10° 10°

Trace Buffer Depth

10

Availability
e & o o 2o 9o 9o B -
Ww B m N m b o

e
N

2016-09-15

Availability (%) — Record Updates Only

Variables in Registers Variables in Memory
1.1
1.0]
0.9}
0.8}
0.7 adpcm
z / — aes
506 /! — blowfish [{
2 /
Zos / dfadd ||
adpcm —_— gsm < yd = dfsin
— aes — jpeg 0.4 — gsm b
— blowfish =—— mips 03 = jpeg |
dfadd ~— motion = mips
— dfdiv — sha 1 0.2 — motion |
dfmul m— Average| | 01l = sha |
=== dfsin = Average
0.0
10° 10" 107 107 10° 10° 10° 10° 10' 10° 10° 10* 10° 10°
Trace Buffer Depth Trace Buffer Depth 21

Recording “Updates Only” works well for variables in registers, but has issues for variables in memory

Availability (%) — Record Updates + Memory Reads

Record when variables are read as well as written

* First, consider memory reads only

10kb Trace
* Provides better availability (at a cost of duration) Memory
Record “Updates + Mem Reads”
11 - - :
Record “Updates Only” 1.0 - —
1.1 0.9} g
0 - 0.8}
0.9
0.7¢ 1
0.8 =
0.7 < osf |
> =
2o T 0.5
%05 < adpcm —SM
< adpcm — gsm 0.4p, — aes ipeg
o4 - zles P ipeg 03l — blowfish =— mips
— lowfisl = MmIpS N .
o3 dfadd ~— motion dfadd = motion
0.2 — dfdiv — sha 0.2 — dfdiv — sha : [22]
01 dfmul == Average dfmul = Average
: i 0.1
= dfsin = dfsin
0900 10" 107 10° 10° 10° 10° 0.0 - -
Trace Buffer Depth 10° 10" 10° 10° 10* 10° 10°

Trace Buffer Depth

11

Observability Results

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Availability

Embedded Logic Analyzer

Record “Updates”
Record “Updates + Mem Reads”
Record “Updates + Reads”

2016-09-15

Duration
25.0
20.0
g 15.0
§> 10.0
o I
0.0 —
Availability Duration vs. ELA
100% - 0.5cyl/kb 1x
88% - 22.0cyl/kb 38x
98% - 12.0cyl/kb 24x [&]
100% - 7.7cyl/kb 14x

Observing a Subset of Variables

What happens to observability if we only observe a subset of variables? 10%? 90%?

Selecting RTL signals for an Embedded Logic Analyzer = Predictable effect on observability

Selecting ‘C’ variables to observe = non-uniform effect on observability:

Bit-width minimization

* 1 Variable in C code = Many signal in hardware:
* LLVM SSA form creates new register/signal for each assignment

* Many Variables in C code - 1 Signal in hardware:

* Function parameters
* In-lining

12

Variable Selection Experiment

Test different variable selection methods and measure availability and duration

Methodology:

* Sweep % of signal traced, from 10% to 100%

* Record “Updates Only”

Variable selection methods:

1. Random: Random selection of variables
R+W Static: Variables that are read or written most often (Static analysis)
R+W Dynamic: Variables that are read or written most often (Dynamic analysis)
4. R/W: Select variables with highest read/write ratio.
5. Bit Width: Select variables with smallest bit width

Variable Selection Results

Availability

=
=]

© o o o
" 9 & B

Availability
o
wu

Random
= R+W

0.2 === R+W Dynamic
’ R/W
01 — Bits

Bits/R/W

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% Traced Variables

1.0

Duration (cyl/Kb)

2016-09-15

120,

100

80

60

40

Duration

Random
— R+W
= R+W Dynamic

R/W |
= Bits

Bits/R/W

2

01 02 03 04 05 06 07 08 09 10 [26]
% Traced Variables

13

2016-09-15

Impact of Results

Different signal-tracing techniques provide observability trade-offs

* Record updates only = Long duration, some variable values unavailable to user

Selecting variables for observation = non-uniform cost

Can we tailor HLS debugging methods to:
 Circuit characteristics?
* Type of bug/issue?

Vision: Automatic analysis for optimal debugging technique

Summary

* HLS users require a full eco-system of tools, including effective debuggers

* Metric for in-system observability of an HLS circuit
* Debugging techniques provided varied observability characteristics

* This is an important step to:
* Developing effective HLS debuggers
» Understanding what techniques are best suited for certain debug problems

14

