Efficient Sum of Absolute Difference Computation on FPGAs

International Conference on Field Programmable Logic and Application (FPL) 2016

Martin Kumm, Marco Kleinlein and Peter Zipf University of Kassel, Germany

Sum of Absolute Difference (SAD)

- SAD is an important operation in image and video processing
- Metric to measure the distance between two blocks of an image
- Applications are, e.g., motion estimation or stereo matching
 - An $R \times C$ SAD operation of two matrices **A** and **B** is defined as:

$$SAD(\mathbf{A}, \mathbf{B}) = \sum_{i=1}^{R} \sum_{j=1}^{C} |a_{i,j} - b_{i,j}|$$

Previous Work

Sequential AD [1]

Parallel AD [2]

FPGA optimized [3]

- SAD is computed with *N* absolute difference (AD) units
- *N*-input adder tree / compressor tree required
- LUTs of best reported circuit grow with 2.5NB (B: word size)

Proposed SAD

Proposed 1×2 SAD

- SAD is computed with *N*/2 1x2 SAD units
- *N*/2-input adder tree / compressor tree required
- LUTs of proposed SAD grow with 2.0NB (B: word size)

Results

(b) Relative LUT reduction compared to [3]

Check out uni_ks git branch of https://scm.gforge.inria.fr/anonscm/git/flopoco/flopoco.git

See you at the poster at 3:30!

Literature:

[1] Kanoh, Absolute Value Calculating Circuit Having a Single Adder, US Patent US 4,953,115, 1990
[2] Chirila-Rus (Xilinx Inc.), Determining Sum of Absolute Differences in Parallel, US Patent US 8,131,788, 2012
[3] Perri, Zicari & Corsonello, Efficient Absolute Difference Circuits in Virtex-5 FPGAs, MELECON 2010