
Survey of Domain-Specific Languages for FPGA Computing

Nachiket Kapre nachiket@ieee.org


Some goodness metric

Expressiveness (Freedom)

Expressiveness (Freedom)

(Freedom)

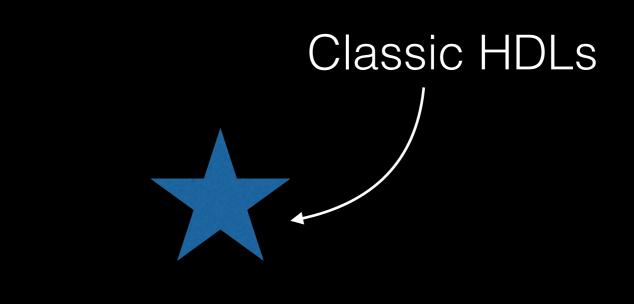
Singapore's contempt of court bill

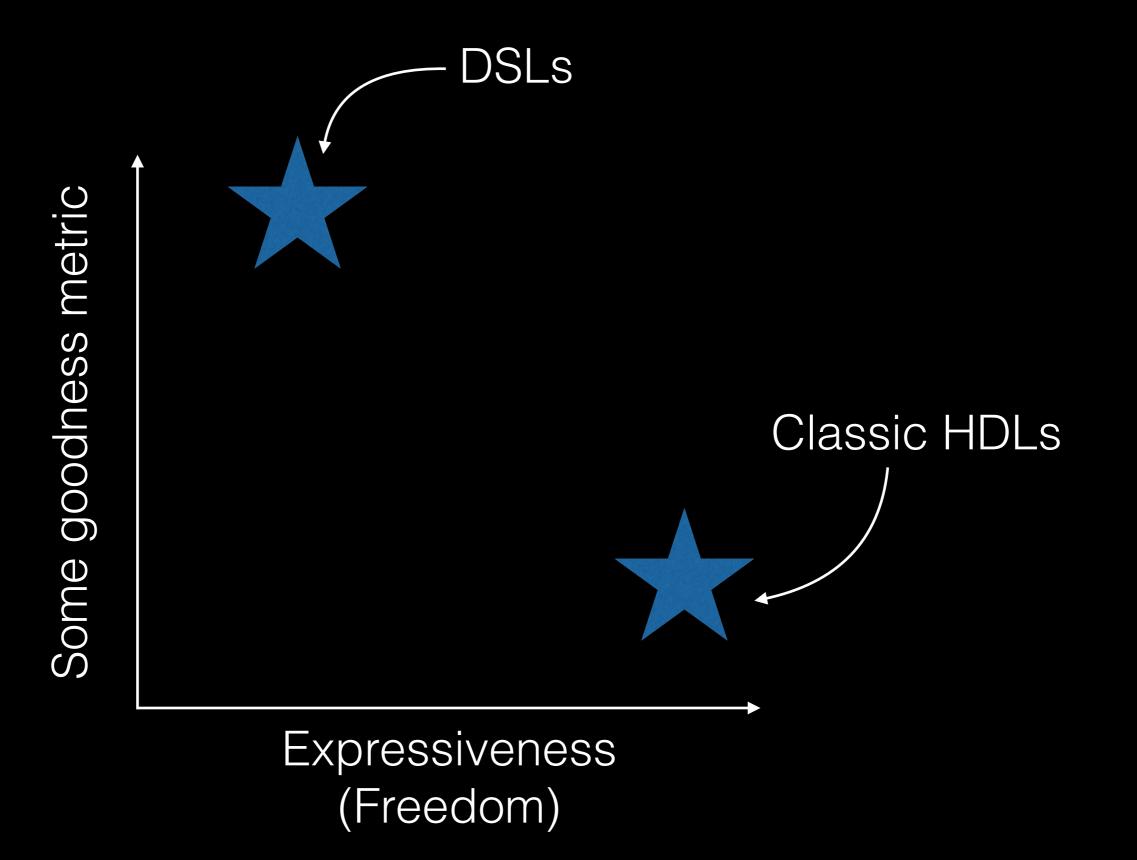
Singapore: Contempt of court bill is a threat to freedom of expression

https://www.amnesty.org/en/latest/news/2016/08/singapore-contempt-of-court-law/

https://twitter.com/amnesty/status/674053786520915969

Donald Trump's hate-filled rhetoric & bigoted scapegoating flies in the face of equality & MUST be rejected.


Trump's attack on judge


Some goodness metric

(Car)

Some goodness metric

Expressiveness (Freedom)

ROBERT MCMILLAN BUSINESS 06.16.14 6:30 AM

MICROSOF SUPERCHA BING SEAR PROGRAM CHIPS

Intel unveils new Xeon chip with integrated FPGA, touts 20x performance boost

By Sebastian Anthony on June 19, 2014 at 1:19 pm Comment

MINISTRY OF INNOVATION / BUSINESS OF TECH

Intel will acquire FPGA maker Altera for \$16.7 billion

Stratix®III

EP3SL150F1152C2N J ABDA70837A

TO .

Consolidation continues in the semi industry with Avago-Broadcom, now this.

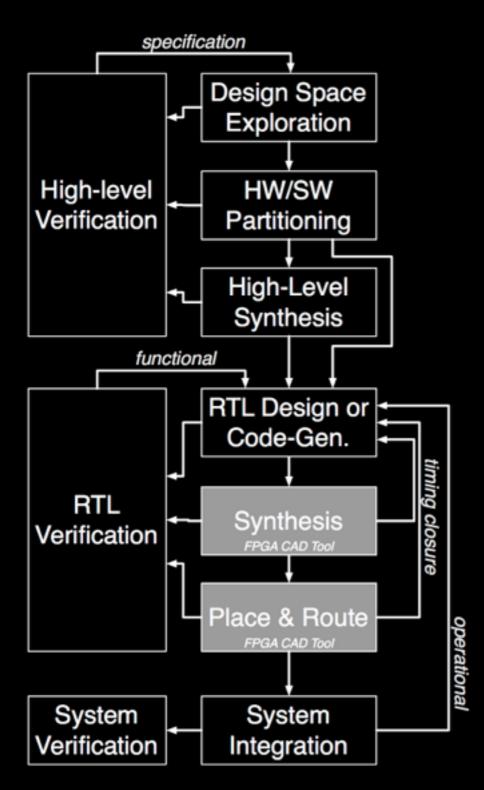
by Sebastian Anthony (UK) - Jun 1, 2015 9:28pm CST

8

f Share 🔰 Tweet 34

Outline

- Review of FPGA Design Flow


 Where we stand?
 Need for DSLs
- Classification of DSLs
- Code Vignettes
- Experimental Results

Outline

- Review of FPGA Design Flow

 Where we stand?
 Need for DSLs
- Classification of DSLs
- Code Vignettes
- Experimental Results

FPGA flow

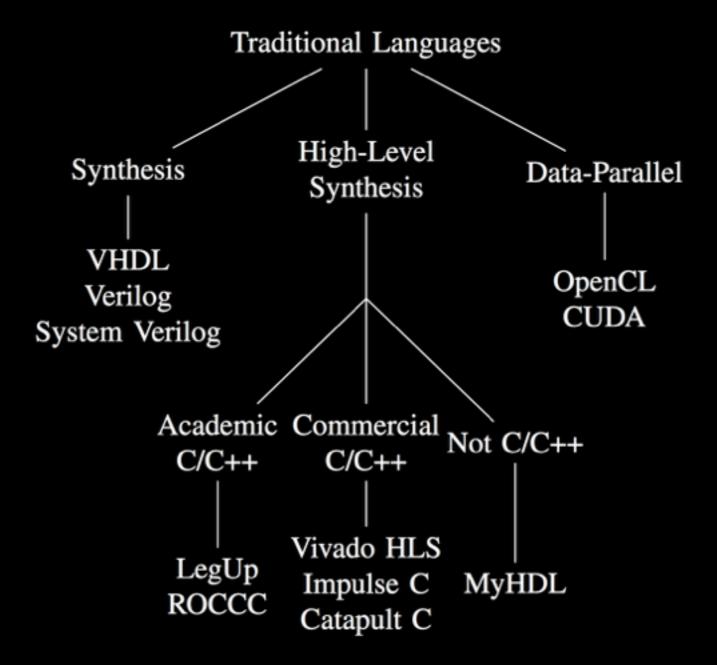
- FPGA flow longer, more complex
- Problem 1: Write low-level Verilog code
- Problem 2: Wait hours to compile (adds insult to injury)
- **Problem 3**: Long verification feedback cycles.

Example code sketches

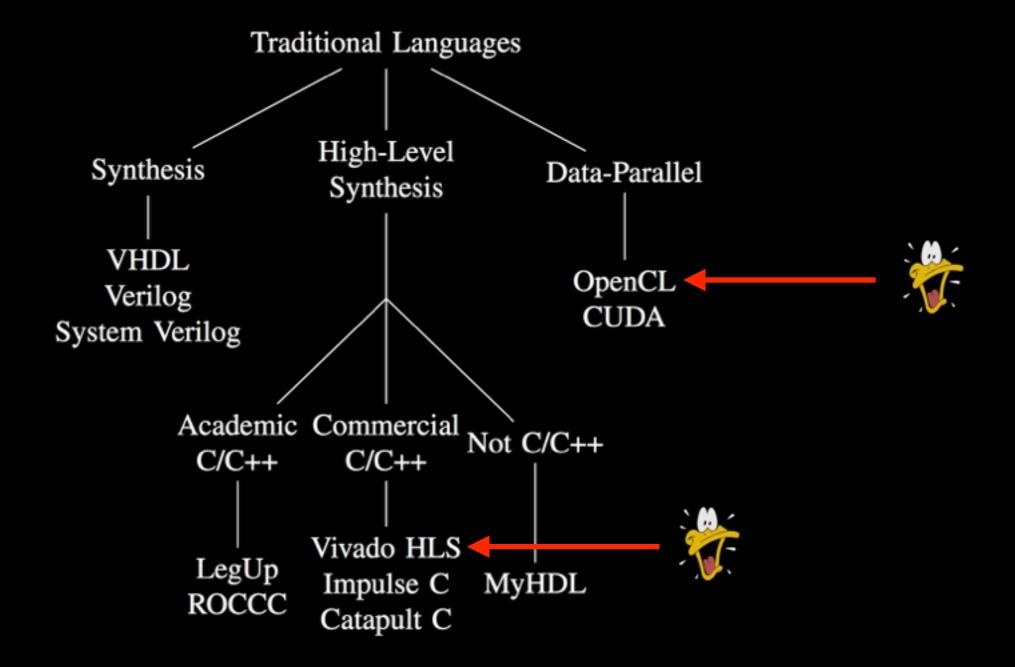
endmodule

Example code sketches

void poly(int x, int* y) {
 int a=3,b=2,c=1;
 *y = a*x*x + b*x + c;
}


What's different?

```
void poly(int x, int* y) {
    int a=3, b=2, c=1;
    *y = a*x*x + b*x + c;
}
```


- What makes the C code smaller?
- Clocking/Reset?
- Explicit pipelining
- Type information

 registers, wires,
 number of bits

Simple forms of parallelism

Simple forms of parallelism

Limits of OpenCL/HLS

• One alternative to HDLs — OpenCL/HLS flow

- Restricted subset of C (no pointers, no complex data sharing) —> sacrifice freedom for speed
- Drawbacks:
 - Overheads due to implicit assumptions
 - more area, slower design, not fully optimised
 - Only really addresses time-to-compilation
 - still need to do synth + P&R

Outline

- Review of FPGA Design Flow

 Where we stand?
 Need for DSLs
- Classification of DSLs
- Code Vignettes
- Experimental Results

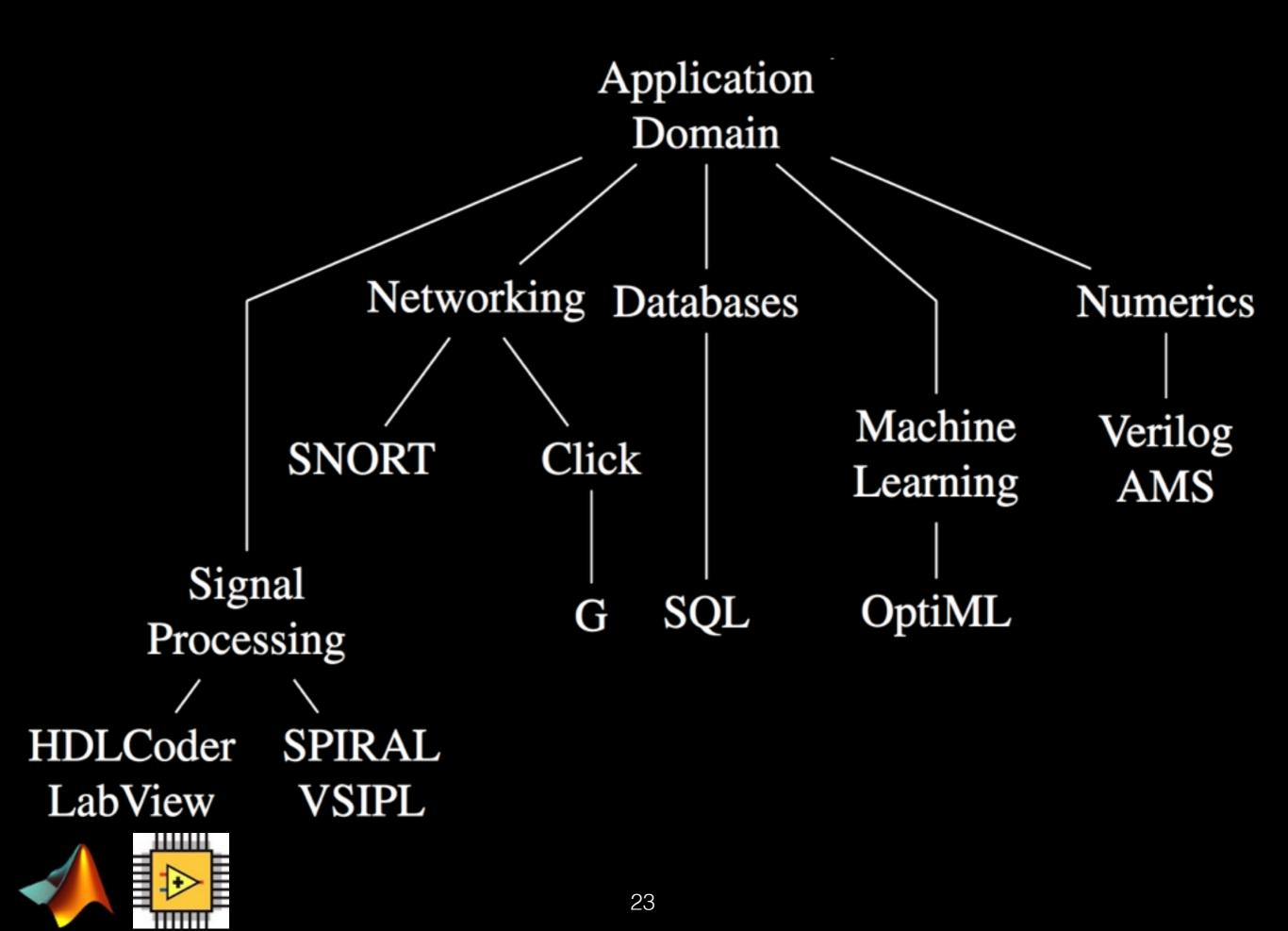
Domain-Specific Languages

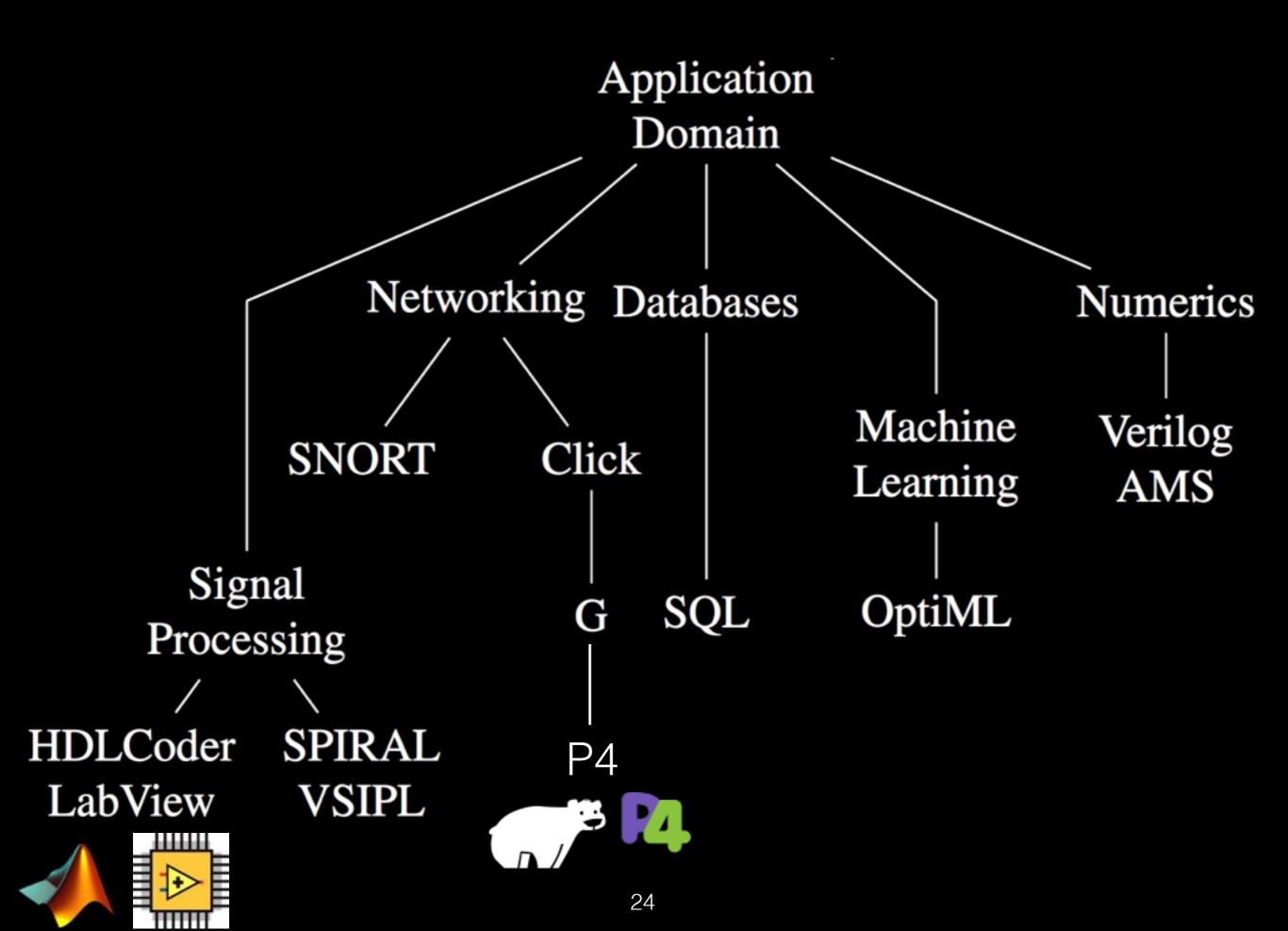
- "Beauty lies in the eye of the beholder"
- Conventional "application-domain" view

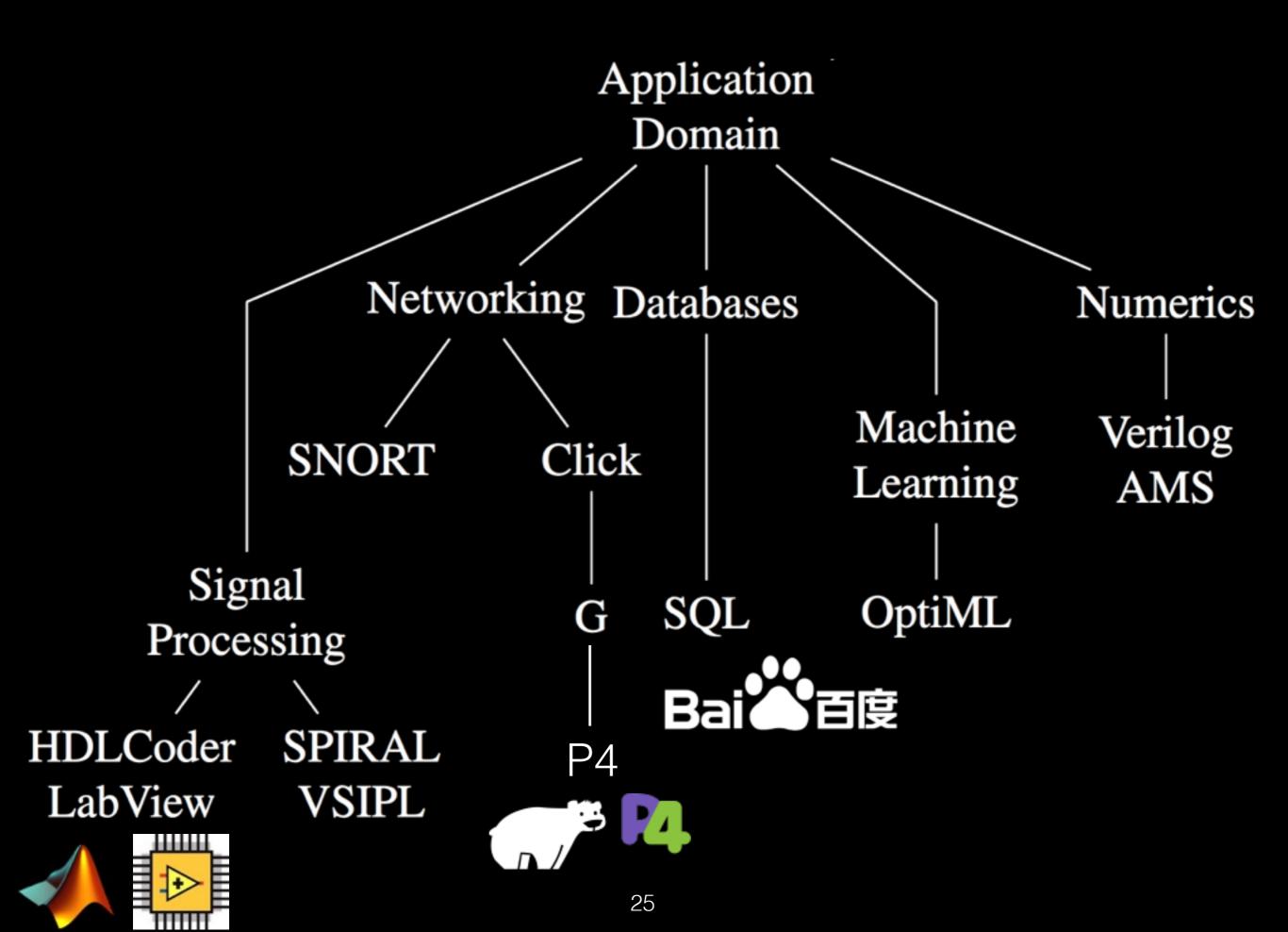
 finance, HPC, radio, multimedia, networking, databases, security.
- Suggest two alternate views in this paper...

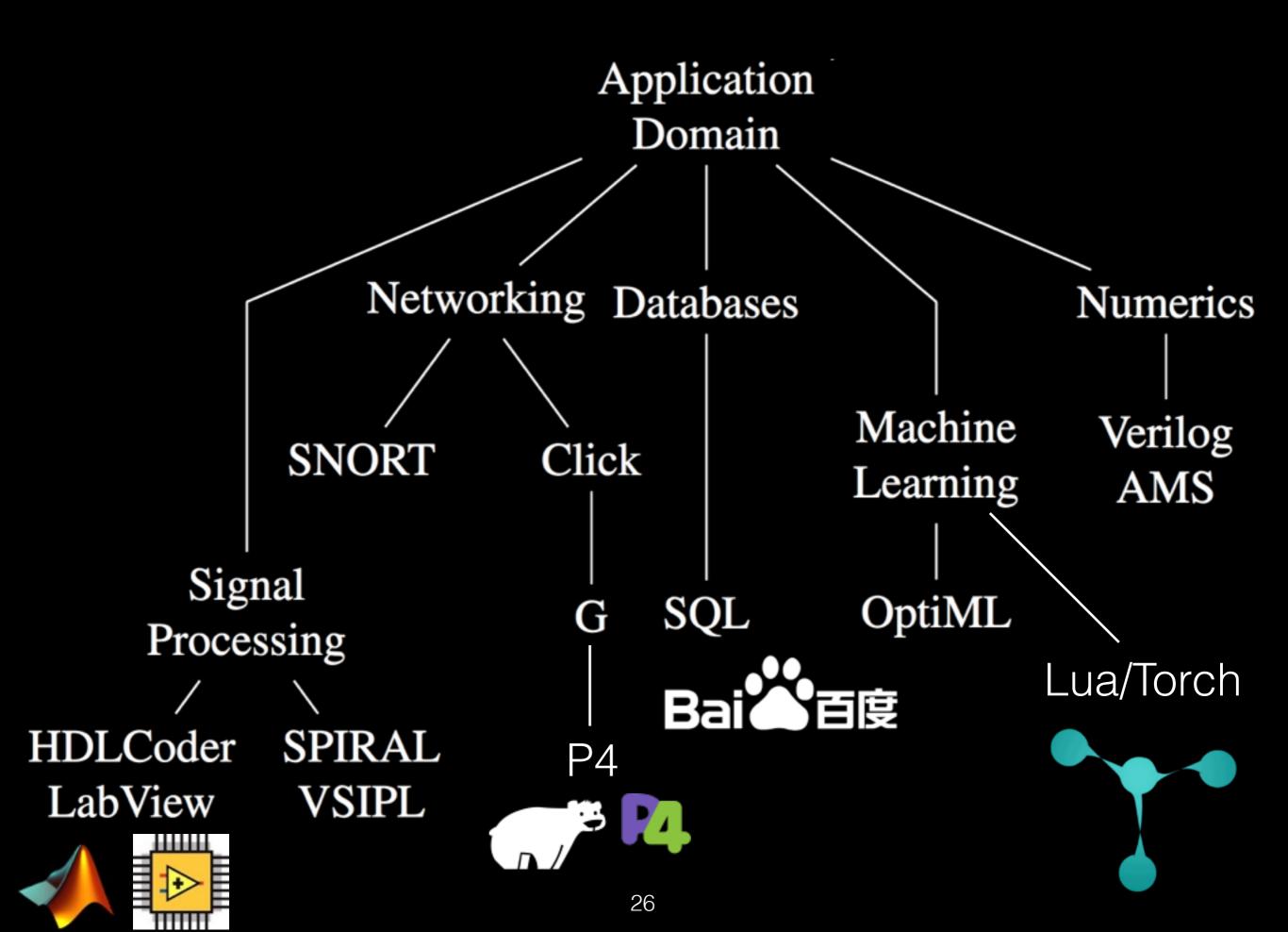
Axes of classification

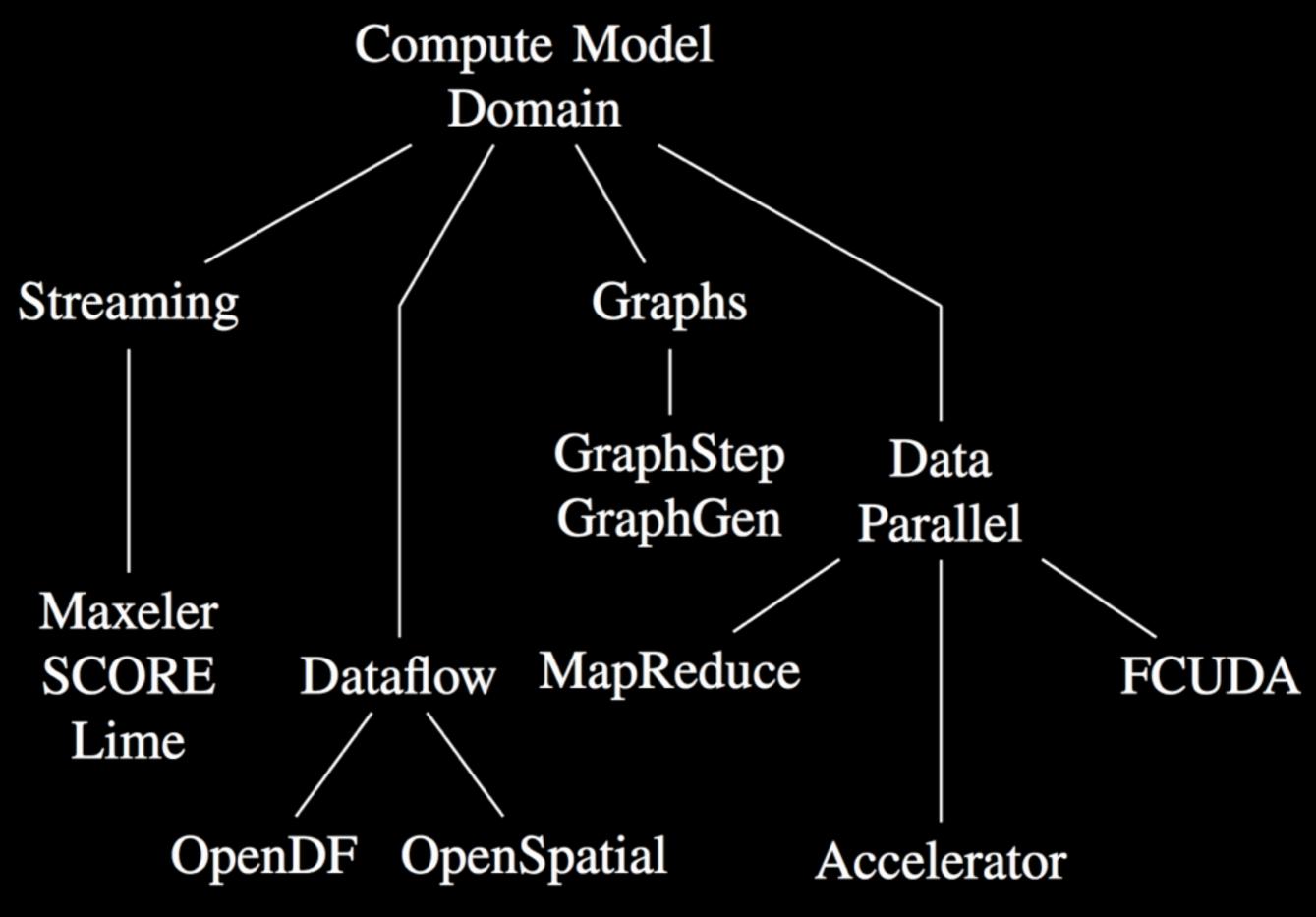

- (1) Conventional "application-domain" view — focus on end-user of FPGA technology
- (2) "compute-model" view
 analogous to Berkeley's Ptolemy classification
- (3) "design" view

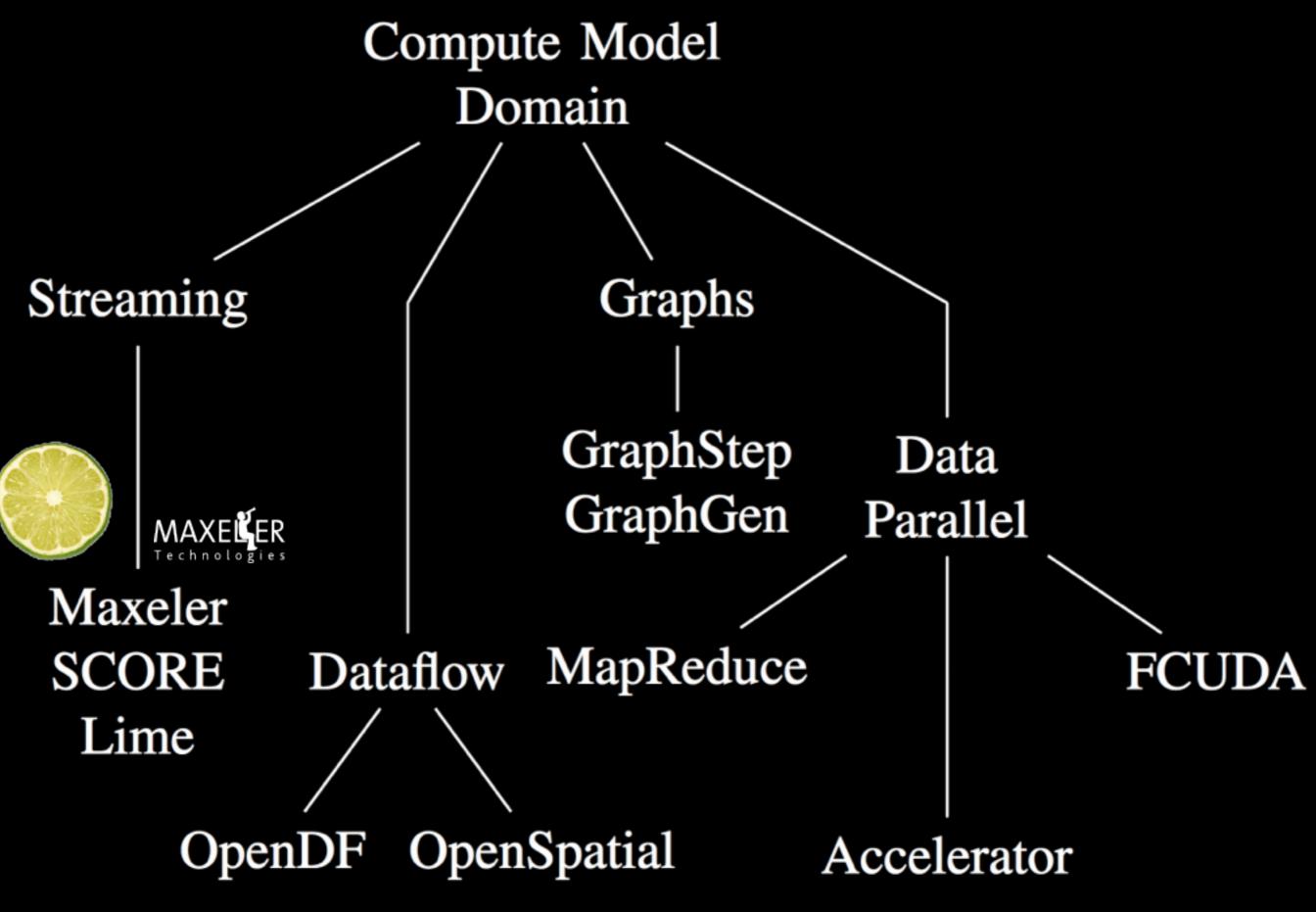

— behind-the-scenes tinkerers, library developers, system builders, academics

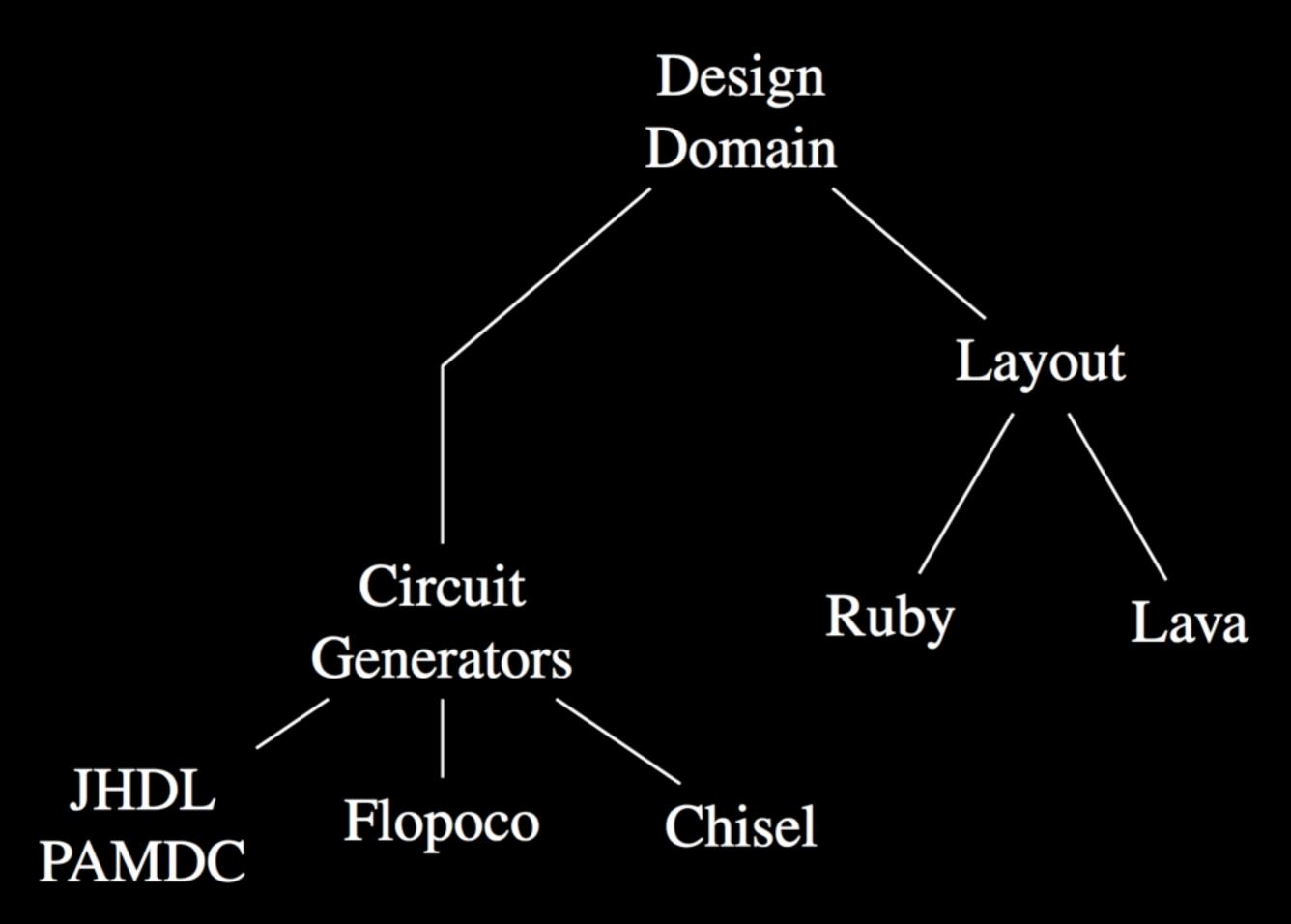

Axes of classification

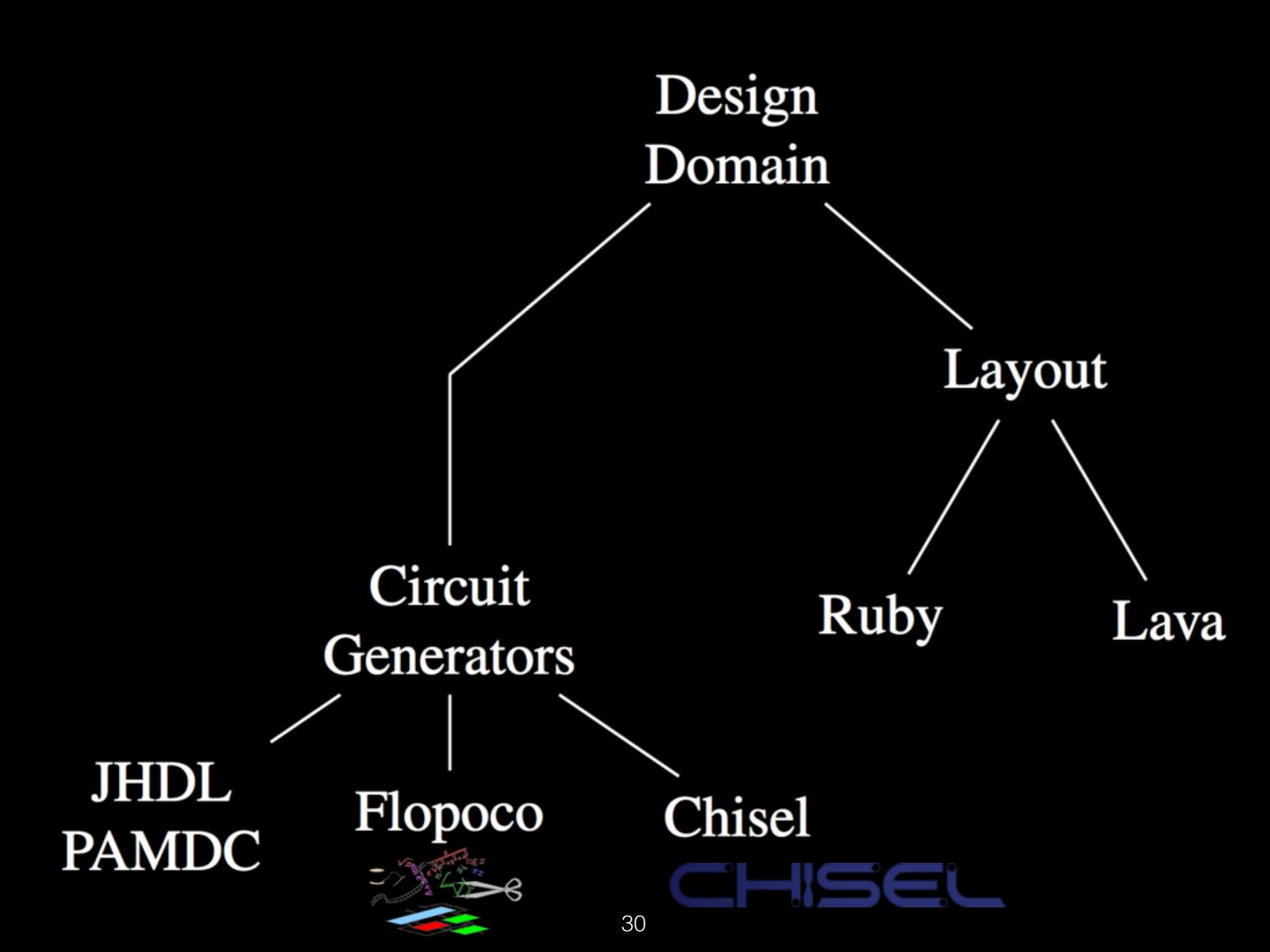

- (1) Conventional "application-domain" view — focus on end-user of FPGA technology
- (2) "compute-model" view
 analogous to Berkeley's Ptolemy classification
- (3) "design" view


— behind-the-scenes tinkerers, library developers, system builders, academics









Outline

- Review of FPGA Design Flow

 Where we stand?
 Need for DSLs
- Classification of DSLs
- Code Vignettes
- Experimental Results

Matlab HDL Coder

Maxeler

class Poly extends Kernel { Poly(KernelParameters parameters) { super(parameters);

```
DFEVar x = io.input("x", dfeUInt(32));
int a = 3, b = 2, c 1;
DFEVar y = a*x*x + b*c + c;
io.output("y", y, dfeUInt(32));
```

SCORE

```
poly(input unsigned[32] x,
      output unsigned[32] y)
{
      unsigned[32] a=3,b=2,c=1;
      state always (x):
           y = a*x*x + b*x + c;
```

MSR Accelerator C#

using PA=Microsoft.ParallelArrays.ParallelArrays;

```
namespace Poly
 class Program
    static void Main(string[] args)
      int N = 1024;
      int a = 3, b = 2, c = 1;
      int[] xArr = new int[N];
      int[] yArr = new int[N];
      FPGATarget t = new FPGATarget();
      PA x = new PA(xArr);
      PA t1 = PA.Multiply(a, x);
      PA t2 = PA.Multiply(t1, x);
      PA t3 = PA.Multiply(b, x);
      PA t4 = PA.Add(t3, t2);
      PA t5 = PA.Add(t4, c);
      yArr = t.ToArray1D(t5);
    }
```

JHDL

```
:public class Poly extends Logic {
```

}

```
// Interface
public static CellInterface[] cif = {
    in("x", 18), out("y", 36),
};
```

```
// Constructor
public Poly(Node parent, Wire y, Wire x) {
```

```
// Connect wires
connect("y", y);
connect("x", x);
// Build our logic
new mult18x18(this, x, x, t1);
new mult18x18(this, t1, a, t2);
new mult18x18(this, b, x, t3);
new adder(this, t2, t3, cin, t4, cout);
new adder(this, t4, c, cin, y, cout);
```

CHISEL

```
class Poly extends Component {
    val io = new Bundle {
        val a = Bits(32, INPUT)
        val b = Bits(32, INPUT)
        val c = Bits(32, INPUT)
        val x = Bits(32, INPUT)
        val y = Bits(32, OUTPUT)
        val y = Bits(32, OUTPUT)
    }
    io.y := io.a * io.x * io.x +
        io.b * io.x + io.c
}
```

Outline

- Review of FPGA Design Flow

 Where we stand?
 Need for DSLs
- Classification of DSLs
- Code Vignettes
- Experimental Results

Experimental Evaluation

- NTU MSc Embedded Systems cohort

 Class of 2014-15
 ~25-30 students
- 3-4 students per DSL
- One 4hr lab session devoted to working on the ax²+bx+c mapping example

DSL	Dev.	Lines	Lines of Code		Resources			
	Time	DSL	RTL	LUTs	FFs	DSPs	MHz	
Flopoco ¹	30m	2	1702	1679	1288	0	91	
Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120	
Vivado HLS	1h	4	92	53	71	3	117	
Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160	
OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267	
Chisel	3h	25	39	129	64	10	66	
OpenDF	3h30m	26	689	171	305	9	120	
JHDL	4h	40	2529 ⁴	41	90	3	84	
SCORE	4h	7	111	139	245	2	74	

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs,

Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

Dev.	- •					
Time	Lines DSL	of Code RTL	R LUTs	Resource FFs	s DSPs	Freq. MHz
30m	2	1702	1679	1288	0	91
30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120
1h	4	92	53	71	3	117
2h30m 2h30m	22	111	245 189	284 209	2 1	160
2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267
3h	25	39	129	64	10	66
3h30m	26	689	171	305	9	120
4h	40	2529 ⁴	41	90	3	84
4h	7	111	139	245	2	74
	Time 30m 30m 30m 30m 1h 2h30m 2h30m 2h30m 2h30m 30m 300m	TimeDSL30m230m1530m42h30m222h30m42h30m43h253h30m264h40	TimeDSLRTL30m2170230m15NA230m4921h4922h30m221112h30m412622h30m25393h266894h4025294	TimeDSLRTLLUTs30m21702167930m15NA26036 58371h492532h30m22111245 1892h30m412623281 32303h25391294h402529441	TimeDSLRTLLUTsFFs30m217021679128830m15NA26036 58375391 53641h49253712h30m22111245 189284 2092h30m412623281 32304443 41923h2539129644h40252944190	TimeDSLRTLLUTsFFsDSPs $30m$ 2 1702 1679 1288 0 $30m$ 15 NA^2 6036 5837 5391 5364 3 0 $1h$ 4 92 53 71 3 $2h30m$ 22 111 245 189 284 209 2 1 $2h30m$ 4 1262 3281 3230 4443 4192 2 0 $3h$ 25 39 129 64 10 $3h30m$ 26 689 171 305 9 $4h$ 40 2529^4 41 90 3

Comp

modi

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs, Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

	DSL	Dev. Time	Lines of DSL	of Code RTL	R LUTs	esources FFs	S DSPs	Freq. MHz
	Flopoco ¹	30m	2	1702	1679	1288	0	91
	Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120
	Vivado HLS	1h	4	92	53	71	3	117
ndor ILS	Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160
	OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267
	Chisel	3h	25	39	129	64	10	66
	OpenDF	3h30m	26	689	171	305	9	120
	JHDL	4h	40	2529 ⁴	41	90	3	84
	SCORE	4h	7	111	139	245	2	74

Ve

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs,

Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

	DSL	Dev. Time	Lines DSL	of Code RTL	R LUTs	lesource FFs	s DSPs	Freq. MHz
×	Flopoco ¹	30m	2	1702	1679	1288	0	91
mited	Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120
expr	Vivado HLS	1h	4	92	53	71	3	117
	Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160
	OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267
	Chisel	3h	25	39	129	64	10	66
	OpenDF	3h30m	26	689	171	305	9	120
	JHDL	4h	40	2529 ⁴	41	90	3	84
	SCORE	4h	7	111	139	245	2	74

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs,

Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

DSL	Dev. Time	Lines DSL	of Code RTL	F LUTs	Resource FFs	s DSPs	Freq. MHz		
Flopoco ¹	30m	2	1702	1679	1288	0	91		
Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120		
Vivado HLS	1h	4	92	53	71	3	117		
Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160		
OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267		
Chisel	3h	25	39	129	64	10	66		
OpenDF	3h30m	26	689	171	305	9	120		
JHDL	4h	40	2529 ⁴	41	90	3	84		
SCORE	4h	7	111	139	245	2	74		

To

COr

tou

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs, Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in ED#F format instead of generating RTL

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Maxeler (baseline) $30m$ 15 NA^2 6036 5837 5391 5364 3 12 Vivado HLS1h492 53 71 3 11 Lime (baseline)2h30m22 111 245 189 284 209 2 16 OpenCL^3 (baseline)2h30m4 1262 3230 3230 4192 4443 4192 2 0 26 OpenDF $3h$ $3h30m$ 25 39 129 129 64 64 10 66 OpenDF $3h30m$ 26 2529^4 41 90 3 84	DSL							Freq. MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Flopoco ¹	30m	2	1702	1679	1288	0	91
HLSLime (baseline) $2h30m$ 22 111 245 189 284 209 2 16 			15	NA ²				120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1h	4	92	53	71	3	117
(baseline) $2h30m$ 3230 4192 0 Chisel $3h$ 25 39 129 64 10 66 OpenDF $3h30m$ 26 689 171 305 9 12 JHDL $4h$ 40 2529^4 41 90 3 84			22	111				160
OpenDF 3h30m 26 689 171 305 9 12 JHDL 4h 40 2529 ⁴ 41 90 3 84	-		4	1262				267
JHDL 4h 40 2529 ⁴ 41 90 3 84	Chisel	3h	25	39	129	64	10	66
	OpenDF	3h30m	26	689	171	305	9	120
SCORE 4h 7 111 139 245 2 74	JHDL	4h	40	2529 ⁴	41	90	3	84
	SCORE	4h	7	111	139	245	2	74

Date

EDIF

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs, Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

	DSL	Dev. Time	Lines of Code DSL RTL		Resources LUTs FFs DSPs			Freq. MHz
		Inne	DSL	KIL	2013	115	2013	
_	Flopoco ¹	30m	2	1702	1679	1288	0	91
	Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120
ardware	Vivado HLS	1h	4	92	53	71	3	117
tudents	Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160
lisliked -	OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267
	Chisel	3h	25	39	129	64	10	66
-	OpenDF	3h30m	26	689	171	305	9	120
	JHDL	4h	40	2529 ⁴	41	90	3	84
	SCORE	4h	7	111	139	245	2	74

Ha sti

O

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs,

Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

	201							
	DSL	Dev.		of Code		lesources		Freq.
. <u>()</u> _		Time	DSL	RTL	LUTs	FFs	DSPs	MHz
T	Flopoco ¹	30m	2	1702	1679	1288	0	91
T	Maxeler (baseline)	30m 30m	15	NA ²	6036 5837	5391 5364	3 0	120
1	Vivado HLS	1h	4	92	53	71	3	117
	Lime (baseline)	2h30m 2h30m	22	111	245 189	284 209	2 1	160
-	OpenCL ³ (baseline)	2h30m 2h30m	4	1262	3281 3230	4443 4192	2 0	267
	Chisel	3h	25	39	129	64	10	66
	OpenDF	3h30m	26	689	171	305	9	120
	JHDL	4h	40	2529 ⁴	41	90	3	84
	SCORE	4h	7	111	139	245	2	74

TABLE I: Comparing DSLs with $ax^2 + bx + c$ mapping

¹Flopoco only provides floating-point support for these expressions ²MaxCompiler does not produce any intermediate RTL, directly generates executable bitstreams ³Altera resources measured in LEs instead of LUTs,

Altera 18×18 DSPs are also different from Xilinx 25×18 DSPs ⁴JHDL directly generates a circuit netlist in EDIF format instead of generating RTL

Conclusions

• Summary

— Vast space of DSLs

— Various states of rot — unmaintained projects

• How to navigate?

First attempt: Does HLS/OpenCL work for you
 Next try: Well-supported tools such as Matlab
 HDLCoder, Tabview FPGA, Maxeler Dataflow
 Finally: Check amongst the DSLs, or write
 your own